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Abstract

As Large Language Models (LLMs) are trained on exponentially more data, there
are rising concerns over confidential information and copyrighted content being
included in pretraining datasets. Under precedent from past rulings in the United
States, LLM creators must also respect an individual’s “right to be forgotten.” Thus,
machine unlearning grew from these needs as a method to allow LLMs to forget
a portion of their training data. While the field of machine unlearning, especially
in the context of LLMs, has grown in the past few years, there has been a marked
lack of methods regarding the auditing of the fine-tuned models. In this paper, We
propose the use of adversarial attacks to perform these privacy audits. Intuitively,
even though the model has been fine-tuned to not produce some tokens, the latent
information was not necessarily erased, allowing carefully crafted prompts to tease
out information.

1 Introduction

LLMs are trained on vast corpuses of text that can and often contain questionable content including
toxic and harmful content, copyrighted materials and personal material. Previous work has shown
many examples of these questionable content coming from both open and closed language models
such as Pythia, GPT-Neo, OPT and GPT-3 to name a few (Wang et al., 2024; Nasr et al., 2023; Carlini
et al., 2023). Moreover, these LLMs have drawn negative press attention and received lawsuits.

To combat these concerns, there have been efforts in machine unlearning techniques to remove the
problematic data from these models (Ginart et al., 2019; Liu et al., 2021; Sekhari et al., 2021; Ye
et al., 2022). However, these techniques cannot easily be extended to LLMs because they usually
involve deleting data points, a much more involved problem in the context of language as identifying
the problematic documents relating to the desired unlearning target is hard. Nevertheless, a new
technique was recently developed that took steps to solve this daunting task, finetuning LLaMA2-chat
(Touvron et al., 2023) to forget about the Harry Potter universe (Eldan & Russinovich, 2023).

While they performed evaluations based on greedily decoding answers to generated questions, their
evaluation was not a comprehensive audit. In fact, a recent paper showed that some facts about the
Harry Potter universe were retained by the fine tuned model Shi et al. (2024). However, their methods
involved generating a large amount of questions with GPT-4, and using perplexity based filtering
methods to identify topics that were not able to be unlearned.

In this project, we propose the use of adversarial attacks to perform these privacy audits on the model.
In the context of machine unlearning, adversarial attacks take the form of generating adversarial
prompts to induce a model to generate the unlearned material.

2 Related Work

Machine Unlearning While of the recent development in machine unlearning has been in regards
to classification models (Ginart et al., 2019; Sekhari et al., 2021; Xu et al., 2023), there has been
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growing literature around unlearning in generative models (Zhang et al., 2023). The first paper to
propose a concrete method to address unlearning introduced a model that was fine-tuned to unlearn
Harry Potter related content (Eldan & Russinovich, 2023).

Adversarial Attacks Adversarial attacks involving generating adversarial inputs that induce un-
desirable behavior in machine learning models are an extensively studied field (Biggio et al., 2013;
Goodfellow et al., 2015; Carlini & Wagner, 2017). These attacks initially stemmed from classification
tasks in the image domain (Moosavi-Dezfooli et al., 2016), and there has been recent development in
language classification tasks such as document classification (Ebrahimi et al., 2018), sentiment analy-
sis (Alzantot et al., 2018), and toxicity filtering (Jones et al., 2023), as well as language generative
tasks such as question answering (Jia & Liang, 2017; Wallace et al., 2021). Recent work has focused
on overcoming toxicity filters (Zou et al., 2023; Hayase et al., 2024) in RLHF models by adapting
methods introduced in the field of automatic prompt generation (Shin et al., 2020).

3 Methods

3.1 Dataset, Models and Evaluation

We will generate a set of question-answer pairs relating to Harry Potter using GPT-4. For each, We
evaluate the perplexity per token of the forced decoded answer, under the naive prompt as well as
modified prompts. We will also measure F1 score over the entire generated dataset. For the model,
we will use the fine-tuned LLaMA-2 model that unlearned Harry Potter content for evaluation. 1.
We hypothesize that we will see huge perplexity decreases and F1 score increases of our method
compared to the base model.

3.2 Experiments

Suffix Attack Suffixes are a logical way to incorporate adversarial inputs into a prompt as they
should have negligible effect on a human’s ability to answer questions. Instead of using a fixed suffix
length as adopted by previous work, We aim to use a dynamic suffix length and leverage dynamic
programming to perform a search akin to beam search.

In-prompt Substitutions For in-prompt substitutions, We will first use a pre-trained entity extrac-
tion model extract relevant entities, and train a classifier to determine if an entity is related to Harry
Potter. For the span of each entity, We will fix a maximum substitution length and pad each entity
with dummy tokens up to that length, and perform token substitutions in each entity span.

Specifics We plan on evaluating on two different types of attacks because we believe in-prompt
substitutions have the potential to be more interpretable compared to suffix based attacks. To expand
on the details of the attacks, given a prompt x = x1:n and a function f : V n × {0, · · · , n} →
{−1, 0, 1} where n is the length of the prompt and f(x, i) = 1 if the token is the start of a replaceable
token span, and -1 if the token marks the end of a replaceable token span. The spans will change
depending on whether we are considering the suffix or in-prompt attack. Assume without loss of
generality that f(x, i1) = 1, f(x, i2) = −1. We fix some hyper-parameter d and add dummy tokens,
τ after the i2th index and result in a new x′ such that x′

i2:i2+(i2−i1+d) = τ . We measure loss of the
tokens that consist of the answer after x′, and use that as our metric.

4 Milestones and Plan

We plan on first implementing past attacks such as GCG (Zou et al., 2023) and then expanding on
those attacks with a beam search technique that allows for efficient search for in-prompt perplexity
maximization. By the halfway point, we hope to have the GCG approach working and be able to
generate adversarial prompts to induce the model to recall latent Harry Potter information.

1https://huggingface.co/microsoft/Llama2-7b-WhoIsHarryPotter
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