
Language Modeling
CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/



2

Recap: Self-Supervised Models

▪ Earlier we define Self-Supervised models as as 
predictive models of the world! 

“Wings over Kansas is [MASK]”

“Wings over Kansas is 
an aviation website 
founded in 1998 by Carl 
Chance owned by Chance 
Communications, Inc.”
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Language Modeling: Motivation

▪ Earlier we define Self-Supervised models as as 
predictive models of the world! 

▪ Language models are self-supervised, or predictive 
models of language. 

▪ How do you formulate? How do you build them?
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Language Modeling: Chapter Plan 

1. Language modeling: definitions and history 

2. Language modeling with counting 

3. Measuring language modeling quality 

4. Language Modeling as a Machine Learning problem 

Chapter goal — getting comfortable with the concept of “language modeling.”  
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Language Modeling: 
Definitions and History



The
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The cat

7



The cat sat
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The cat sat on
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The cat sat on  __?__

10



The cat sat on  __?__
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The cat sat on  __?__

12



The cat sat on  __?__

13



P(mat |The cat sat on the)

14

context  or prefixnext word
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Probability of Upcoming Word 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
context  or prefixnext word
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LMs as a Marginal Distribution

▪ Directly we train models on “marginals”: context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Language 
Model

…
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LMs as Implicit Joint Distribution over Language 

▪ While language modeling involves learning the marginals, we are 
implicitly learning the full/joint distribution of language. 

o Remember the chain rule: 

P(𝑋1, … , 𝑋𝑡) = P(𝑋1) ς𝑖=1
𝑡 P(𝑋𝑖 |𝑋1, 𝑋2 … , 𝑋𝑖)

▪ Language Modeling ≜ learning prob distribution over language 
sequence. 
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The Language Modeling Problem, Formally

▪ Learning to assign a probability to every sequence: 

o Finite vocabulary Σ = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}

o Infinite set of sequences in this language Σ∗ = {𝑥1, 𝑥1𝑥2, 𝑥2𝑥3, 𝑥2𝑥1𝑥3, 𝑥4𝑥3𝑥1𝑥2, … }

෍

𝑒∈Σ∗

𝑝LM 𝑒 = 1,

𝑝LM 𝑒 ≥ 0, ∀𝑒 ∈ Σ∗

▪ Note, this statement does not specify the vocabulary (the atomic unit). 

o Example units: words, characters, bytes, etc. 

Note that this is a (joint) distribution 
over sequences; different from (but 

related to) the conditional. 
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Suppose we have a language model now. 
What can we do with it? (how is it useful?)
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Doing Things with Language Model 

▪ What is the probability of …. “I like Johns Hopkins University”

“like Hopkins I University Johns” 



21

Doing Things with Language Model 

▪ What is the probability of ….

▪ LMs assign a probability to every sentence (or any string of words). 

“I like Johns Hopkins University”

“like Hopkins I University Johns” 

P(“I like Johns Hopkins University”)=10-5

P(“like Hopkins I University Johns” )=10-15
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Doing Things with Language Model (2)

▪ We can rank sentences.

▪ While LMs show “typicality”, this may be a proxy indicator to other properties: 

o Grammaticality, fluency, factuality, etc.  

P(“I like Johns Hopkins University.”)    >   P(“I like John Hopkins University”)  

P(“I like Johns Hopkins University.”)    >   P(“University. I Johns EOS Hopkins like”) 

P(“JHU is located in Baltimore.”)   >   P(“JHU is located in Virginia.”) 

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
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Doing Things with Language Model (3)

▪ Can also generate strings! 

▪ Let’s say we start “Johns Hopkins is ”

▪ Using this prompt as an initial condition, recursively sample from an LM: 

1. Sample  from P(X | “Johns Hopkins is ”)   →“located”

2. Sample  from P(X | “Johns Hopkins is located”)   →“at”
3. Sample  from P(X | “Johns Hopkins is located at”)   →“the”

4. Sample  from P(X | “Johns Hopkins is located at the”)   →“state”
5. Sample  from P(X | “Johns Hopkins is located at the state”)   →“of”

6. Sample  from P(X | “Johns Hopkins is located at the state of”)   →“Maryland”
7. Sample  from P(X | “Johns Hopkins is located at the state of Maryland”)   →“EOS”

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Notice this special word to 
indicate end of sentences
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Why Care About Language Modeling?

▪ Language Modeling is a subcomponent superset of many tasks: 

o Summarization 

o Machine translation 

o Spelling correction 

o Dialogue etc. 

▪ Language Modeling is an effective proxy for language understanding. 

o Effective ability to predict forthcoming words requires on understanding of 
context/prefix.
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You use Language Models every day! 
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You use Language Models every day! 
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Summary 

▪ Language modeling: building probabilistic distribution over language. 

▪ An accurate distribution of language enables us to solve many important 
tasks that involve language communication. 

▪ Next question: how do you actually estimate this distribution? 
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Language Modeling 

with Counting
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LMs as a Marginal Distribution

▪ Now the question is, how to estimate this distribution. 

context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)

30

Count how often 
”the cat sat on the mat” 

has appeared in the world (internet)! 

Divide that by, the count of 
”the cat sat on the” 

in the world (internet)! 



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 

31

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)



P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?  
Let’s just count! 

32

Challenge: Increasing 𝑛 makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs) 
though still an open problem. 

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)
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Understanding Sparsity: A Thought Experiment

▪ Consider Shakespeare’s writing. 

▪ Say, we want the count of any word-pair that Shakespeare knows

▪ The size vocab used by Shakespeare: |V|=29,066 

▪ The number of potential word-pairs 29,066 x 29,066 ~ 844 million 

o (some of them don’t make sense, but ok!)

▪ Of this, Shakespeare has used ~300K word-pair combinations in his writings! 

▪ So, 99.96% of the possible bigrams are never seen (hence, have zero entries 
for bigram counts).
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Language Models: A History

▪ Shannon (1950): The redundancy and predictability (entropy) of English. 

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its non-descendants, given its parents.

35
[Prediction and Entropy of Printed English, Shanon 1950] 

1st order approximation: 1 element

P(mat | the cat sat on the) ≈ P(mat | the)  

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

1st order approximation: 

36

1 element

[Prediction and Entropy of Printed English, Shanon 1950] 

P(mat | the cat sat on the) ≈ P(mat | the)  

P(mat | the cat sat on the) ≈ P(mat | on the)  

2 elements2nd order approximation: 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

1st order approximation: 
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1 element

[Prediction and Entropy of Printed English, Shanon 1950] 

P(mat | the cat sat on the) ≈ P(mat | the)  

P(mat | the cat sat on the) ≈ P(mat | on the)  

2 elements2nd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | sat on the)  

3 elements3rd order approximation: 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Then, we can use counts of approximate conditional probability. 
Using the 3rd order approximation, we can: 

P(mat | the cat sat on the) ≈ P(mat | sat on the) =
count(“sat on the mat”)

count(“on the mat”)

38
[Prediction and Entropy of Printed English, Shanon 1950] 

P(mat | the cat sat on the) ≈ P(mat | sat on the)  

3 elements3rd order approximation: 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf
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N-gram Language Models 

▪ Terminology: n-gram is a chunk of n consecutive words: 
o unigrams: “cat”, “mat”, “sat”, …

o bigrams: “the cat”, “cat sat”, “sat on”, …

o trigrams: “the cat sat”, “cat sat on”, “sat on the”, …

o four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

▪ n-gram language model: 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1) ≈ P(𝑋𝑡| 𝑋𝑡−𝑛+1, …, 𝑋𝑡−1) =
count(𝑋𝑡−𝑛+1,…, 𝑋𝑡−1, 𝑋𝑡)

count(𝑋𝑡−𝑛+1,…, 𝑋𝑡−1)

𝑛 − 1 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf
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How easy is it to build 
an n-gram language model?
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Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]
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Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

Otherwise, seems reasonable!

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...
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Generation from N-Gram Models

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...

Otherwise, seems reasonable!
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Generation from N-Gram Models

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

of 0.308 
for 0.050 
it 0.046 
to 0.046 
is 0.031
...

condition on this

Otherwise, seems reasonable!

▪ Now we can sample from this mode: 



45

Generation from N-Gram Models

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

the 0.072 
18 0.043 
oil 0.043 
its 0.036 
gold 0.018
...

condition on this

Otherwise, seems reasonable!
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N-Gram Models in Practice

▪ Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical! 

But quite incoherent! To improve coherence, one may consider increasing 
larger than 3-grams, but that would worsen the sparsity problem! 

[adopted from Chris Manning]
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N-Gram Language Models, A Historical 
Highlight 

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation Fred Jelinek 

(1932-2010)

“Every time I fire a linguist, the performance of 
the speech recognizer goes up”!!
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n-gram language models are enough 
to give us many interesting insights! 
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us 
something about us … 

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html


51

Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Limits of N-Grams LMs: Long-range Dependencies

▪ In general, count-based LMs are insufficient models of language 
because language has long-distance dependencies:

“The computer which I had just put into the 
machine room on the fifth floor crashed.”
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Summary 

▪ Learning a language model ~ learning conditional probabilities over language. 

▪ One approach to estimating these probabilities: counting word co-occurrences.

▪ Challenges: 

o Word co-occurrences become rare for long sequences. (the sparsity issue)  

o But language understanding requires long-range dependencies. 

▪ We need a better alternative! 

▪ Next: Measuring quality of language models. 
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How Good are 
Language Models? 
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Large Language Models

▪ A language model can predict the next word 
based on the given context.

LMThe cat is on the _??_

roof
tree
moon
physics
the
protein
…

P(roof|X)=0.00
P(tree|X)=0.01
P(moon|X)=0.01
P(physics|X)=0.1
P(the|X)=0.1
P(protein|X)=0.3
...

[slide credit: Arman Cohan]

X := The cat is on the 
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Large Language Models

▪ A language model can predict the next word 
based on the given context.

LM1

The cat is on the _??_

roof
tree
moon
physics
the
protein
…

P(roof|X)=0.00
P(tree|X)=0.01
P(moon|X)=0.01
P(physics|X)=0.1
P(the|X)=0.1
P(protein|X)=0.3
...

LM2

roof

tree

moon

physics

the

protein

…

P(roof|X)=0.14

P(tree|X)=0.13

P(moon|X)=0.001

P(physics|X)=0.0

P(the|X)=0.000

P(protein|X)=0.00

…

[slide credit: Arman Cohan]

Which LM is better?

X := The cat is on the 
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Evaluating Language Models 

▪ Does our language model prefer good sentences to bad ones?

o Assign higher probability to “real” or “frequently observed” sentences

o Than “ungrammatical” or “rarely observed” sentences?

▪ We test the model’s performance on data we haven’t seen.
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Evaluating Language Models 

Setup: 

o Train it on a suitable training documents. 

o Evaluate their predictions on different, unseen documents. 

o An evaluation metric tells us how well our model does on the test set.
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Evaluating Language Models: Example

59

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtable

Setup: 

o Train it on a suitable training documents. 

o Evaluate their predictions on different, unseen documents. 

o An evaluation metric tells us how well our model does on the test set.

A good language model 

should assign a high 
probability to held-out text!
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Be Careful About Data Leakage! 

Advice from a grandpa : 

- Don’t allow test sentences to leak into into training set. 

- Otherwise, you will assign it an artificially high probability (==cheating). 

60

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtable

A good language model 

should assign a high 
probability to held-out text!
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Quiz: Building Intuition

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 = (cat, sat, on, the, mat) from our natural data. 

▪ We can show the probability that our language model assigns to this sentence with: 

𝐏 𝑤1, 𝑤2, … , 𝑤𝑛

▪ A strong language model would assign a __ probability to this sentence. (high or low?) 

▪ A weak language model would assign a __ probability to this sentence. (high or low?) 

Next, we will define “perplexity”, a metric that quantifies LM’s 
uncertainty with respect to a corpus of natural sentences. 
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Evaluation Metric for Language Modeling: Perplexity

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data. 

▪ Perplexity is the inverse probability of the test set, normalized by the number of words: 

▪ A measure of predictive quality of a language model. 

▪ A LM with lower perplexity is better because it assigns a higher probability to the unseen 
test corpus. 

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

1

𝑛
normalizes the probability 

as a function of length so 

that longer sequences are 

not assigned lower scores. 

The negative power (. )− inverses 

the score. So, a small probability 

become a larger score – working 

with small numbers is tedious. 
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▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data. 

▪ Perplexity is the inverse probability of the test set, normalized by the number of words: 

Evaluation Metric for Language Modeling: Perplexity

But wait, we usually have conditionals not the joint distribution! 

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛
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▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data. 

▪ Perplexity is the inverse probability of the test set, normalized by the number of words: 

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

=
𝑛 1

𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
=

𝑛

ෑ

𝑖=1

𝑛
1

𝐏 𝑤𝑖|𝑤<𝑖

= 2𝐻, where

chain rule

Evaluation Metric for Language Modeling: Perplexity

𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)
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▪ For a given a sampled sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data: 

▪ Notice that this consists of probability assigned to all the partial sentences 
(i.e., next word probabilities). 

▪ In practice, we prefer to use log-probabilities (also known as “logits”) since 
probabilities are too small and hard to understand (e.g., 10^-18 vs -18). 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Putting Things Together: Perplexity Definition 
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▪ Quiz: let’s we evaluate a confused (!!) model of language, i.e., our model 
has no idea what word should follow each context—it always chooses a 
uniformly random word. What is the perplexity of this model? 

▪ Answer: 𝑉 (size of the vocabulary) – why?

Intuition-building Quizzes (1)
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▪ Quiz: let’s we evaluate a confused (!!) model of language, i.e., our model 
has no idea what word should follow each context—it always chooses a 
uniformly random word. What is the perplexity of this model? 

▪ Sample a sentence from corpus:  X=“The cat is on the mat.”

Intuition-building Quizzes (1)

∀𝑤 ∈ 𝑉: 𝐏 𝑤 𝑤1:𝑖−1) =
1

|𝑉|
⇒ ppl 𝐷 = 2

−
1

𝑛
𝑛 log2

1

𝑉 = |𝑉|

LM
For any partial sub-sentence: 

X=The cat is on the _??_

roof
tree
moon
physics
…

P(roof|X)=1/|V|
P(tree|X)=1/|V|
P(moon|X)=1/|V|
P(physics|X)=1/|V|
…
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▪ Quiz: let’s suppose we have a sentence 𝑤1, … , 𝑤𝑛 and it’s fixed. Our 
language is model is mildly confused because it narrows down the plausible 
continuations to 5 words, but it is confused among them. So it it assigns 
probability 1/5 to the correct next word. What is perplexity of our model? 

𝐻 = −
1

𝑛
log2

1

5
+ ⋯ + log2

1

5
= −log

1

5
⇒ ppl D = 5

Intuition-building Quizzes (2)

Intuition: the model is indecisive among 5 choices. 

LM
A partial sentence:

X=The cat is on the _??_

P(roof|X)=1/5
P(tree|X)=1/5
P(table|X)=1/5
P(mat|X)=1/5
P(wall|X)=1/5
P(physics|X)=0
P(tesla|X)=0
…

Our LM has narrowed 
down the right 

continuation to one of 
these five words.
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▪ Quiz: let’s we evaluate an exact (!!) model of language, i.e., our model 
always knows what exact word should follow a given context. What is the 
perplexity of this model? 

Intuition-building Quizzes (2)

∀𝑤 ∈ 𝑉: 𝐏 𝑤𝑖 𝑤1:𝑖−1) = 1 ⇒ ppl 𝐷 = 2−
1

𝑛
𝑛 log2 1 = 1

Intuition: the model is indecisive among 1 (the right!) choice! 

LM

P(mat|X)=1
P(physics|X)=0
P(tesla|X)=0
…

�A partial sentence:

X=The cat is on the _??_
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Perplexity: Summary 

▪ Perplexity is a measure of model’s uncertainty about next word (aka ”average 
branching factor”). 

o The larger the number of vocabulary, the more options there to choose from. 

o (the choice of atomic units of language impacts PPL — more on this later)

▪ Perplexity ranges between 1 and |V|. 

▪ We prefer LMs with lower perplexity. 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)
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▪ Remember the ppl definition:

▪ Which expression corresponds to PPL of (1) unigram, (2) bigram and (3) trigram LM. 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Quiz: Perplexity for N-Grams 

𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤𝑖−1) 𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤𝑖−2, 𝑤𝑖−1)
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Lower perplexity == Better Model 

▪ Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

[Mohit Iyyer] 

Note these evaluations are done on data that 
was not used for “counting.” (no cheating!!) 

Lower is 
better
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Lower perplexity == Better Model 

The PPL of modern language models have consistently been going down. 

[Language Modelling on Penn Treebank (Word Level)] 

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
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Lower perplexity == Better Model 

The PPL of modern language models have consistently been going down. 

[Scaling Laws, Jared Kaplan et al.] 
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▪ Compare the definition of PPL and cross-entropy: 

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Perplexity as An Implicit Cross-Entropy 

Cross-entropy between two distributions 𝑞, 𝑝 :

CE(𝑞, 𝑝) = − ෍

𝑥∈𝒳

𝑞 𝑥 log 𝑝(𝑥)

The H term in PPL can be interpreted as cross-entropy between LM 
distribution and the latent (unobserved) distribution of language. Why? 

Hint: Monte Carlo Approximation + Law of Large Numbers. 
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Summary

▪ Language Models (LM): distributions over language 

▪ Measuring LM quality: use perplexity on held-out data. 

▪ Count-based LMs have limitations. 

o Challenge with large N’s: sparsity problem — many zero counts/probs. 

o Challenge with small N’s: lack of long-range dependencies. 

▪ Next: Rethinking language modeling as a statistical learning problem. 
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Evaluating Language Models: Intrinsic vs Extrinsic 

o Intrinsic: measure how good we are at modeling language

o Extrinsic: build a new language model, use it for some task (MT, 
ASR, etc.)

78

train eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe 
probabilityof someheldout
datausingourbigramtableextrinsic 

eval

LM
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Beyond Counting: 

Language Models as 
a Learning Problem
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window target word

blah    blah    blah     blah     
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window of size 4 target worddiscard

blah    blah    blah     blah     
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LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Discard anything beyond its context window 

intoturningproblemsourand

context words in window of size 4 target word
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A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict a target word on the right side. 

o Dropping the right context for simplicity -- not a fundamental limitation. 

▪ Training this model is basically optimizing its parameters Θ such that it assigns 
high probability to the target word.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (

…
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A Fixed-Window Neural LM

▪ It will also lay the foundation for the future models (recurrent nets, transformers, ...) 

▪ But first we need to figure out how to train neural networks! 

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters 
of neural network 

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (

How do you build 
this function? 

Neural Networks 
for rescue! …
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From Counting (N-Gram) to Neural Models

● n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

 “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, …]

NeurIPS 2000
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Summary

▪ Language Modeling (LM), a useful predictive objective for language

▪ Perplexity, a measure of an LM’s predictive ability

▪ N-gram models (~1980 to early 2000’s), 

o Early instances of LMs 

o Difficult to scale to large window sizes 

▪ Shallow neural LMs (early and mid-2000’s), 

o We will learn about build neural networks in the next chapter.  

o These will be effective predictive models based on feed-forward networks 
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