JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Language Modeling

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

Recap: Self-Supervised Models

= Earlier we define Self-Supervised models as as
predictive models of the world!

“Wings over Kansas is [{AS4|” » % »

“Wings over Kansas is
an aviation website
founded in 1998 by Carl
Chance owned by Chance
Communications, Inc.”

Language Modeling: Motivation

= Earlier we define Self-Supervised models as as
predictive models of the world!

= Language models are self-supervised, or predictive
models of language.

= How do you formulate? How do you build them?

Language Modeling: Chapter Plan

1. Language modeling: definitions and history

2. Language modeling with counting

3. Measuring language modeling quality

4. Language Modeling as a Machine Learning problem

Chapter goal — getting comfortable with the concept of “language modeling.”

Language Modeling:

Definitions and History

The

The cat

The cat sat

The cat sat on

The cat sat on

?

10

The cat sat on

?

11

The cat sat on

?

12

The cat sat on

13

P(mat [The cat sat on the)

next word

Probability of Upcoming Word

— N

next wo context or prefix

P(Xt‘){11 rry t—})

LMs as a Marginal Distribution

next

= Directly we train models on “marginals”: word context
//\

P(X¢| X1/ - Xe-1)

Language
“The cat sat on the [[IS&]” » Mgde’g

&3 loHNS H
L

16

LMs as Implicit Joint Distribution over Language

= While language modeling involves learning the marginals, we are
implicitly learning the full/joint distribution of language.

o Remember the chain rule:
P(Xy, ..., Xt) = P(X) TTi21 P(X; | X1, Xo .., X))

* Language Modeling £ learning prob distribution over language
sequence.

17

The Language Modeling Problem, Formally

= Learning to assign a probability to every sequence:
o Finite vocabulary X = {x,,x,, x3,...,x,}
o Infinite set of sequences in this language X = {x, x,x,, X, X3, X, X1 X3, X4X3X1 X5, ... }

Z (e) = 1 Note that this is a (joint) distribution
PLMie) = L over sequences; different from (but
related to) the conditional.

pLM(e) > 0, Ve € X

= Note, this statement does not specify the vocabulary (the atomic unit).
o Example units: words, characters, bytes, etc.

@ lons 18

=

Suppose we have a language model now.
What can we do with it? (how is it useful?)

|

19

Doing Things with Language Model

* What is the probability of ... "l like Johns Hopkins University”

“like Hopkins | University Johns”

20

Doing Things with Language Model

/4

* What is the probability of ... "l like Johns Hopkins University

/

"“like Hopkins | University Johns'

= LMs assign a probability to every sentence (or any string of words).

P("l like Johns Hopkins University”) =10->

P(“like Hopkins | University Johns”) =10-15

21

Doing Things with Language Model (2)

next word context

//R

P(X¢| X1/ - Xe1)

= While LMs show "“typicality”, this may be a proxy indicator to other properties:
o Grammaticality, fluency, factuality, etc.

= We can rank sentences.

P("/ like Johns Hopkins University.”) > P("l like John Hopkins University”)
P("/ like Johns Hopkins University.”) > P("University. | Johns EOS Hopkins like”)
P("JHU is located in Baltimore.”) > P("JHU is located in Virginia.”)

22

Doing Things with Language Model (3)

= Can also generate strings! T

next word context

P(X¢| X1/ - Xe1)

= Let's say we start "Johns Hopkins is
= Using this prompt as an initial condition, recursively sample from an LM:

E-N
=

L

N oy s w NP

Sample from P(X| "Johns Hopkins is) —"located”

Sample from P(X|"Johns Hopkins is located”) —"at”

Sample from P(X|'Yohns Hopkins is located at”) —“the"”

Sample from P(X|Johns Hopkins is located at the”) —“state”

Sample from P(X| "Johns Hopkins is located at the state”) —"“of”

Sample from P(X| "Johns Hopkins is located at the state of”) —“Maryland”
Sample from P(X| "Johns Hopkins is located at the state of Maryland”) —“EOS”

Notice this special word to
indicate end of sentences)3

Why Care About Language Modeling?

= Language Modeling is a subcomponent superset of many tasks:
o Summarization
o Machine translation
o Spelling correction
o Dialogue etc.

= Language Modeling is an effective proxy for language understanding.

o Effective ability to predict forthcoming words requires on understanding of
context/ prefix.

E-N
]
ol

24

You use Language Models every day!

e I'll meet you at the @ >

And now the fun starts

Can't make it~ Addlabel

Add label
alrport .
p ‘J Brian Strope « 2 Brian Strope ~
to me 10 mé
May 1 eta May 17 View details
They finally came through with the Ugh, | took a turn for the worst last night
contract. I won't be able to make it to the party.

Please have a great time without me
| expect the work to start tomorrow.
Sorry for all the delays.

= Oh no! Feel We will Sorry to
No worries, Great news, That - a ; ; A
hat's gre: otte miss yo 2
thanks for g better miss you ear that
news
the update!
- LN -»
- 7N = teply al F r
Repl Rey rward

25

You use Language Models every day!

26

Summary

= Language modeling: building probabilistic distribution over language.

= An accurate distribution of language enables us to solve many important
tasks that involve language communication.

= Next question: how do you actually estimate this distribution?

27

Language Modeling

with Counting

LMs as a Marginal Distribution

next
word

P(X¢| X1,y Xe—1)

context

= Now the question is, how to estimate this distribution.

29

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

P(“mat” | “the cat sat on the”

Count how often
“the cat sat on the mat”
has appeared in the world (internet)!

count(“the cat sat on the mat”)

count(“the cat sat on the”)

Divide that by, the count of
"the cat sat on the”
in the world (internet)!

30

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(“mat” | “the cat sat on the”) =
(|) count(“the cat sat on the”)

® Q

(=

Glogle "the bird sat on the mat" %

Q Al @ Images [Videos (7 Shopping @ Maps i More Tools

About 1results (0.22 seconds)

It looks like there aren't many great matches for your
search

31

P(X¢| X1, ..., X¢—1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(“mat” | “the cat sat on the”) =
(|) count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

32

= Consider Shakespeare’s writing.
= Say, we want the count of any word-pair that Shakespeare knows
= The size vocab used by Shakespeare: |V|=29,066

= The number of potential word-pairs 29,066 x 29,066 ~ 844 million
o (some of them don’t make sense, but ok!)

= Of this, Shakespeare has used ~300K word-pair combinations in his writings!

= S0, 99.96% of the possible bigrams are never seen (hence, have zero entries
for bigram counts).

33

Language Models: A History

= Shannon (1950): The redundancy and predictability (entropy) of English.

Prediction and Entropy of Printed English
By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

A new method of estimating the cntro‘)y and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known, Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

t ' an- 1 element
1°t order approximation: ,

P(mat | the cat sat on the) ® P(mat | the)

35
[Predicti E f Pri Endglish. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

Andrey Markov

2"d order approximation: 2 elements
l__\

P(mat | the cat sat on the) ® P(mat | on the)

t i 0on- 1 element
1°t order approximation: ,

P(mat | the cat sat on the) P(mat | the)

36
[Predicti E f Pri English. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

34 order approximation: 3 elements

A

Andrey Markov

P(mat | the cat sat on the) ® P(mat | sat on the)

2"d order approximation: 2 elements
l__\

P(mat | the cat sat on the) ® P(mat | on the)

t i 0on- 1 element
1°t order approximation: ,

P(mat | the cat sat on the) P(mat | the)

37
[Predicti E f Pri Endglish. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X¢| X1, ..., X¢—1)

34 order approximation: 3 elements

A

P(mat | the cat sat on the) ® P(mat | sat on the)

Andrey Markov

Then, we can use counts of approximate conditional probability.
Using the 3™ order approximation, we can:

count(“sat on the mat”)

P(mat | the cat sat on the) = P(mat | sat on the) = count(“on the mat)

38
[Predicti E f Pri English. S]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

= Terminology: n-gram is a chunk of n consecutive words:

"\ "\ 1

o unigrams: “cat”, "mat”, “sat”, ...

o bigrams: “the cat”, “cat sat”, "sat on”, ...

o trigrams: “the cat sat”, “cat saton”, “sat on the”, ...
e

four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, ...

= n-gram language model:

n — 1 elements

A
N _ count(Xe—n4q,-0 Xe—1, Xt)

'd
P(Xe| X1, ooy Xem1) = POX¢| Xempip1s oo Xem1) =

count(Xe—n+1,. Xt—1)

r‘l | [— E f Printed English, Shanon 1g50] 39

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

=

How easy is it to build
an n-gram language model? _|

Generation from N-Gram Models

* You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Tryfor yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 44

Generation from N-Gram Models

* You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

today the
get probability ;Z:Eany
distribution price
italian
emirate

* Tig¥or yourself: https://nlpforhackers.io/language-models/

0.153
0.153
0.977
0.039
0.039

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 42

Generation from N-Gram Models

= Now we can sample from this mode:

today the
Sparsity problem: not
N company ©.153 much granularity in the
get pr_obalyhty bank 0.153 probability distribution
distribution price 0.077
italian 0.039 _
emirate ©.039 Otherwise, seems reasonable!

* Tryfor yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning] 43

Generation from N-Gram Models

= Now we can sample from this mode:

condition on this

today the priée

get probability 2;,
distribution it
to
is

* Tig¥or yourself: https://nlpforhackers.io/language-models/

0.308
0.050
0.046
0.046
0.031

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 44

Generation from N-Gram Models

= Now we can sample from this mode:

condition on this

A

today the }ar‘ice of _

e the
get probability 18
distribution oil
its
gold

0.072
0.043
0.043
0.036
0.018

* Tig¥or yourself: https://nlpforhackers.io/language-models/

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning] 45

N-Gram Models in Practice

= Now we can sample from this mode:

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

* Tryfor yourself: https://nlpforhackers.io/language-models/

[adopted from Chris Manning] 46

N-Gram Language Models, A Historical
Highlight [

“Every time | fire a linguist, the performance of iy
the speech recognizer goes up”!! ¥

e Probabilistic n-gram models of text generation [Jelinek+ 19807, ...] 7 \

e Applications: Speech Recognition, Machine Translation Fred Jeiinek
(1932-2010)

532 PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical
Methods

FREDERICK JELINEK, FELLOW, IEEE

_Abstract—Statistical methods useful in automatic recognition of con- utterance models used will incorporate more grammatical

:?“.:“’mmmg :;m mm:.&mof m“ :odmsela’ s::t;ﬁal speaker and features, and statistics will have been grafted onto grammatical
e param-

eters, and hypothesis nu;ch procedures and likelihood computations of models. Most methods presented here concern modeling of

linguistic decoding. Experimental results are presented that indicate the speaker’s and acoustic processor’s performance and should,

the power of the methods. therefore, be universally useful.

Antoamatic recoonitian of continnous (Englich) eneech ig an
E-N
T

' & . 47

=

n-gram language models are enough
to give us many interesting insights!

|

48

0.00550% —

0.00500% -

0.00450% -

0.00400% -

0.00350% -

0.00300% -

0.00250% -

0.00200% -

0.00150% —

0.00700% -

0.00050%

Pl‘e-com puted N-G rams Google Books Ngram Viewer

democracy
depression

bomb
terrorism

-

0.00000% -

18

00 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

,F,.._‘l, JOHMNS HOPEINS
v

49

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-com putEd N -G rams Google Books Ngram Viewer

0 001204 - Language models can tell us
0 00110%- something about us ...

0.00100% -
0.00090% -
0.00080% —
0.00070% -
0.00060% =

civil war
0.00050% =
0.00040% -. emancipation
0.00030% —
0.00020% —

0.00010% -

0.00000% — T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(elick on line/label for focus)

Google n-gram viewer https://books.google.com/ngrams/

551 JoHNS HOPKINS
v Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

50

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-com putEd N -G rams Google Books Ngram Viewer

0.001000% —

0.000900% —

0.000800% - The United States is (All)
0.000700% -
0.000600% —
0.000500% —
0.000400% -
0.000300% - The United States are (All)

0.000200% -

0.000100% -

0.000000% T T T T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

(click on line/label for focus, right click to expand/contract wildcards)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

&7 JoHNS HOPKINS
U s 51

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Limits of N-Grams LMs: Long-range Dependencies

= In general, count-based LMs are insufficient models of language
because language has long-distance dependencies:

"The computer which I had just put into the
machine room on the fifth floor crashed.”

52

Summary

= Learning a language model ~ learning conditional probabilities over language.
= One approach to estimating these probabilities: counting word co-occurrences.

= Challenges:
o Word co-occurrences become rare for long sequences. (the sparsity issue)
o But language understanding requires long-range dependencies.

= We need a better alternative! ()

= Next: Measuring quality of language models.

oy
ol

53

How Good are

Language Models?

[slide credit: Arman Cohan]

Large Language Models

= A language model can predict the next word
based on the given context.

X :=The catis on the

roof P(roof|X)=0.00
tree P(tree|X)=0.01
moon P(moon|X)=0.01
The cat is on the ?? —» LM —p < physics P(physics|X)=0.1
the P(the|X)=0.1
protein P(protein|X)=0.3

@ lons >3

[slide credit: Arman Cohan]

Large Language Models

X :=The cat is on the

roof P(roof|X)=0.00

tree P(tree|X)=0.01

moon P(moon|X)=0.01
— physics P(physics|X)=0.1

LM 1 the P(the|X)=0.1
protein P(protein|X)=0.3

The catis onthe ?7?

roof P(roof|X)=0.14
\ tree P(tree|X)=0.13
) : o moon P(moor_1|X)=0.001
Which LM is better~ M2 ohysics P(physics|X)=0.0
the P(the|X)=0.000

protein P(protein|X)=0.00
r‘.il.. = aw - 56

= A language model can predict the next word
based on the given context.

Evaluating Language Models

= Does our language model prefer good sentences to bad ones?
o Assign higher probability to “real” or “frequently observed” sentences
o Than “ungrammatical” or “rarely observed” sentences?

= We test the model’s performance on data we haven't seen.

oy
. |

57

Evaluating Language Models

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

o Held-Out Test
Training Data Data Data
Counts / parameters from Hyperparameters Evaluate here

here from here

E-N
]

Evaluating Language Models: Example

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

Example:1useabunch of New

York Timesarticlesto build a) i
bigram probability table should assign a high

probability to held-out text!

A good language model Now I'm going to evaluate the
probability of some heldout

datausingourbigramtable

Be Careful About Data Leakage!

Advice from a grandpa(:
- Don't allow test sentences to leak into into training set.
- Otherwise, you will assign it an artificially high probability (==cheating).

Example:1useabunch of New

York Timesarticlesto build a) i
bigram probability table should assign a high

probability to held-out text!

A good language model Now I'm going to evaluate the
probability of some heldout

datausingourbigramtable

eval
count(“on the mat”) ——————)

Quiz: Building Intuition

Sample a sentence (w,,w,, ..., w,) = (cat, sat, on, the, mat) from our natural data.
We can show the probability that our language model assigns to this sentence with:
P(wy,wy, ..., wy)

A strong language model would assign a __ probability to this sentence. (high or low?)

A weak language model would assign a __ probability to this sentence. (high or low?)

Next, we will define “perplexity”, a metric that quantifies LM’s
uncertainty with respect to a corpus of natural sentences.

@ lons 61

Evaluation Metric for Language Modeling: Perplexity

Sample a sentence (w,, w,, ..., w,,) from our natural data.

Perplexity is the inverse probability of the test set, normalized by the humber of words:
1

ppl(Wl) seey WTL) — P(Wl, Wo, ..., Wn)_z
a

The negative power (.)~ inverses

the score. So, a small probability

become a larger score — working
with small numbers is tedious.

711 normalizes the probability

as a function of length so
that longer sequences are
_ hot assigned lower scores.)

A measure of predictive quality of a language model.

A LM with lower perplexity is better because it assigns a higher probability to the unseen
test corpus.

L . 62

Evaluation Metric for Language Modeling: Perplexity

= Sample a sentence (w,,w,, ..., w,,) from our natural data.

= Perplexity is the inverse probability of the test set, normalized by the number of words:
1

ppl(Wl) =er) WTL) — P(Wl, Wo, ..., Wn)_ﬁ

[But wait, we usually have conditionals not the joint distribution! @ J

@ lons 63

Evaluation Metric for Language Modeling: Perplexity

= Sample a sentence (w,,w,, ..., w,,) from our natural data.

= Perplexity is the inverse probability of the test set, normalized by the number of words:
1

ppl(Wl; ey WTL) — P(Wl, Wy, ..., Wn)_%

P(W1, Wo, ...,Wn) \1 L] P(Wi|W<i) chainrule

= 21 where

n
1
H = _ﬁz log, P(w;|wy, ..., w;_q)
=1

l 64

Putting Things Together: PEI‘plEXity DEfinition
= For a given a sampled sentence (w,, w,, ..., w,,) from our natural data:
1
ppl(wy, ...,w,,) = 2%, where H = ——Yi=qlogy P(wilwy, ..., w;_4)

= Notice that this consists of probability assigned to all the partial sentences
(i.e., next word probabilities).

= In practice, we prefer to use log-probabilities (also known as “logits”) since
probabilities are too small and hard to understand (e.g., 10”~-18 vs -18).

65

Intuition-building Quizzes (1)

= Quiz: let's we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

= Answer: |V| (size of the vocabulary) — why?

66

Intuition-building Quizzes (1)

= Quiz: let's we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

= Sample a sentence from corpus: X="The cat is on the mat.”
roof P(roof|X)=1/|V]

For any partial sub-sentence: tree P(tree|X)=1/|V|
X=The catisonthe ?7? —— LM — moon P(moon|X)=1/|V|

physics P(physics|X)=1/|V|

1 1
vw € V: Pwlwy 1) == = ppl(D) = 2B = |y

V]

67

Intuition-building Quizzes (2)

= Quiz: let's suppose we have a sentence wy, ..., w,, and it’s fixed. Our
language is model is because it narrows down the plausible
continuations to 5 words, but it is confused among them. So it it assigns
probability 1/5 to the correct next word. What is perplexity of our model?

P(roof|X)=1/5]

A partial sentence: P(tree|X)=1/5
X=The catisonthe ?? —» —» { P(table|X)=1/5
-~ LM P(mat|X)=1/5 k
P(wall|X)=1/5 _

P(physics|X)=0
P(tesla|X)=0

N\

Our LM has narrowed
down the right
continuation to one of
these five words.

= ppl(D) = 5

H = 11 1+ + 1 1 = —1 .
- nOgZS Og25 - OgS

[Intuition: the model is indecisive among 5 choices.

68

Intuition-building Quizzes (2)

= Quiz: let's we evaluate an exact (!!) model of language, i.e., our model
always knows what exact word should follow a given context. What is the
perplexity of this model?

: P(mat|X)=1
A partial sentence: P(physics|X)=0
X=The catisonthe ?? —7” LM =3 P(tesla]X)=0

1
vw € V:P(Wilwy,;_) =1 = ppl(D) =27n" %81 =1
7
[Intuition: the model is indecisive among 1 (the right!) choice! }

69

Perplexity: Summary

1
ppl(wy, ...,w,) = 2%, where H = —=Yi=1 logy P(wilwy, ..., w;_y)

= Perplexity is @ measure of model’s uncertainty about next word (aka "average
branching factor”).

o The larger the number of vocabulary, the more options there to choose from.
o (the choice of atomic units of language impacts PPL — more on this later)

= Perplexity ranges between 1 and |V|.

= We prefer LMs with lower perplexity.

Quiz: Perplexity for N-Grams

= Remember the ppl definition:

1
ppl(wy, ...,w,,) = 2¥, where H = —— i1 logy P(wilwy, ..., w;i4)

= Which expression corresponds to PPL of (1) unigram, (2) bigram and (3) trigram LM.

1% 1% 1N
H = _Ez log, P(wilw;—y) H = —Ez log, P(w;) H= _;Z log, P(Wilw; 2, wi-1)
i=1 =1 t=1

o H 71

Lower perplexity == Better Model

= Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order

Perplexity 170 109

Loweris Note these evaluations are done on data that
better was not used for “counting.” (no cheating!!)

!:1 |- HNS HOPEITINS
- [Mohit lyyer] 72

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

100

75

50

TEST PERPLEXITY

25

Al

Zaremba et al. (2014) - LSTM (large)

2015

B JouNs H

Recurrent.highway networks

2016

AWD-LSTM=+.continuous cache pointer
GL-LWGC + AWD-MoS-LSTM + dynamic eval

GPT-2
2017 2018 2019
Other models Models with lowest Test perplexity

[Language Modellingon Penn Treebank (Word Level)]

BERT-Large-CAS

GPT=3_(Zero-Shot)

2020

73

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

74
4.2
6 —— L=(D/5.4:103)709%5 | 5.6 —— L=(N/8.8:10'3)70076
3.9
4.8
» 5
8 3.6 4.0
- 4
—
8 3:3 3.2
= 8
3.0
24
L= (Cmin/2-3 , 108)_0'050
2 v — r . 2.7 y . v v :
i0-® 1077 10° 102 107! 10! 10° 10° 10° 107 10°
Compute Dataset Size Parameters
59 JoH~Ns H

5 PENRIN [Scaling Laws, Jared Kaplan et al.]

Perplexity as An Implicit Cross-Entropy

= Compare the definition of PPL and cross-entropy:
_ 9H _ _1¢n
ppl(wy, ...,w,,) = 2%, where H = —;Ziﬂlogz P(w;|lwy, ...,w;_1)

Cross-entropy between two distributions q, p :

CB(q,p) ==) q(x) 10gp()

XEX

The Hterm in PPL can be interpreted as cross-entropy between LM
distribution and the latent (unobserved) distribution of language. Why?
Hint: Monte Carlo Approximation + Law of Large Numbers.

50

.‘r_l HMS H Pol Ph 76

Summary

Language Models (LM): distributions over language

Measuring LM quality: use perplexity on held-out data.

Count-based LMs have limitations.

o Challenge with large N’s: sparsity problem — many zero counts/probs.

o Challenge with small N's: lack of long-range dependencies.

Next: Rethinking language modeling as a statistical learning problem.

77

Evaluating Language Models: Intrinsic vs Extrinsic

o Intrinsic: measure how good we are at modeling language
o Extrinsic: build a new language model, use it for some task (MT,

ASR, etc.)
Google
% Translate
Example: 1 useabunch of New Now I’'m going to evaluate the

YorkTimesarticlesto builda L probability of some heldout
bigram probability table extrinsic datausingourbigramtable

eval

LM

Beyond Counting:
Language Models as

a Learning Problem

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah blah blah blah and our problems turning

Y ! Y)
context words in window target word

v a 80

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah—btah—blan—blah and our problems turning

\ Y / L Y d
discard context words in window of size 4 target word
== B {
&

81

LM as a Machine Learning Problem

= Given the embeddings of the context, predict the word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

and our problems turning

context words in window of size 4 target word

@ lons 82

A Fixed-Window Neural LM

= Given the embeddings of the context, predict a target word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Training this model is basically optimizing its parameters 0 such that it assigns
high probability to the target word.

Probs over vocabulary

of neural network mat |

table |
000 OOO OOO
f(| | [eo0] [oo0] — O) =) e |

[Trainableparameters] O i B

Iookup embeddlngs | ant :|
and our problems turnlng into chair |22
context words in window of size 4 ta rget word

g JoHns H y [Bengio et al. 2003] 83

A Fixed-Window Neural LM

= Tt will also lay the foundation for the future models (recurrent nets, transformers, ...)
= But first we need to figure out how to train neural networks!

How do you build Probs over vocabulary
: i Trainable parameters R]
this function? of neural network mat I

table I

000 ooo ooo
f(| | [o00] [e00] — O)mp i
Iookupembeddmgs ant :|
Neural Networks ol;r problems tummg into | chair [

for rescue!

context words in window of size 4 ta rget word

[Bengio et al. 2003] 84

From Counting (N-Gram) to Neural Models

e n-gram models of text generation [Jelinek+ 19807, ...]
e Applications: Speech Recognition, Machine Translation

&, “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, ...]

NeurlPS 2000 A Neural Probabilistic Language Model

Yoshua Bengio; Réjean Ducharme and Pascal Vincent
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 317
{bengioy,ducharme,vincentp} @iro.umontreal.ca
E-N

@ JOHNS ' 85

Summary

oy
. |

Language Modeling (LM), a useful predictive objective for language
Perplexity, a measure of an LM’s predictive ability

N-gram models (~1980 to early 2000's),
o Early instances of LMs

o Difficult to scale to large window sizes

Shallow neural LMs (early and mid-2000’s),
o We will learn about build neural networks in the next chapter.

o These will be effective predictive models based on feed-forward networks

86

	Slide 1: Language Modeling
	Slide 2: Recap: Self-Supervised Models
	Slide 3: Language Modeling: Motivation
	Slide 4: Language Modeling: Chapter Plan
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Probability of Upcoming Word
	Slide 16: LMs as a Marginal Distribution
	Slide 17: LMs as Implicit Joint Distribution over Language
	Slide 18: The Language Modeling Problem, Formally
	Slide 19
	Slide 20: Doing Things with Language Model
	Slide 21: Doing Things with Language Model
	Slide 22: Doing Things with Language Model (2)
	Slide 23: Doing Things with Language Model (3)
	Slide 24: Why Care About Language Modeling?
	Slide 25: You use Language Models every day!
	Slide 26: You use Language Models every day!
	Slide 27: Summary
	Slide 28
	Slide 29: LMs as a Marginal Distribution
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Understanding Sparsity: A Thought Experiment
	Slide 34: Language Models: A History
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: N-gram Language Models
	Slide 40
	Slide 41: Generation from N-Gram Models
	Slide 42: Generation from N-Gram Models
	Slide 43: Generation from N-Gram Models
	Slide 44: Generation from N-Gram Models
	Slide 45: Generation from N-Gram Models
	Slide 46: N-Gram Models in Practice
	Slide 47: N-Gram Language Models, A Historical Highlight
	Slide 48
	Slide 49: Pre-Computed N-Grams
	Slide 50: Pre-Computed N-Grams
	Slide 51: Pre-Computed N-Grams
	Slide 52: Limits of N-Grams LMs: Long-range Dependencies
	Slide 53: Summary
	Slide 54
	Slide 55: Large Language Models
	Slide 56: Large Language Models
	Slide 57: Evaluating Language Models
	Slide 58: Evaluating Language Models
	Slide 59: Evaluating Language Models: Example
	Slide 60: Be Careful About Data Leakage!
	Slide 61: Quiz: Building Intuition
	Slide 62: Evaluation Metric for Language Modeling: Perplexity
	Slide 63: Evaluation Metric for Language Modeling: Perplexity
	Slide 64: Evaluation Metric for Language Modeling: Perplexity
	Slide 65: Putting Things Together: Perplexity Definition
	Slide 66: Intuition-building Quizzes (1)
	Slide 67: Intuition-building Quizzes (1)
	Slide 68: Intuition-building Quizzes (2)
	Slide 69: Intuition-building Quizzes (2)
	Slide 70: Perplexity: Summary
	Slide 71: Quiz: Perplexity for N-Grams
	Slide 72: Lower perplexity == Better Model
	Slide 73: Lower perplexity == Better Model
	Slide 74: Lower perplexity == Better Model
	Slide 76: Perplexity as An Implicit Cross-Entropy
	Slide 77: Summary
	Slide 78: Evaluating Language Models: Intrinsic vs Extrinsic
	Slide 79
	Slide 80: LM as a Machine Learning Problem
	Slide 81: LM as a Machine Learning Problem
	Slide 82: LM as a Machine Learning Problem
	Slide 83: A Fixed-Window Neural LM
	Slide 84: A Fixed-Window Neural LM
	Slide 85: From Counting (N-Gram) to Neural Models
	Slide 86: Summary

