
Language Modeling
CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

Recap: Self-Supervised Models

▪ Earlier we define Self-Supervised models as as
predictive models of the world!

“Wings over Kansas is [MASK]”

“Wings over Kansas is
an aviation website
founded in 1998 by Carl
Chance owned by Chance
Communications, Inc.”

3

Language Modeling: Motivation

▪ Earlier we define Self-Supervised models as as
predictive models of the world!

▪ Language models are self-supervised, or predictive
models of language.

▪ How do you formulate? How do you build them?

4

Language Modeling: Chapter Plan

1. Language modeling: definitions and history

2. Language modeling with counting

3. Measuring language modeling quality

4. Language Modeling as a Machine Learning problem

Chapter goal — getting comfortable with the concept of “language modeling.”

5

Language Modeling:
Definitions and History

The

6

The cat

7

The cat sat

8

The cat sat on

9

The cat sat on __?__

10

The cat sat on __?__

11

The cat sat on __?__

12

The cat sat on __?__

13

P(mat |The cat sat on the)

14

context or prefixnext word

15

Probability of Upcoming Word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
context or prefixnext word

16

LMs as a Marginal Distribution

▪ Directly we train models on “marginals”: context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Language
Model

…

17

LMs as Implicit Joint Distribution over Language

▪ While language modeling involves learning the marginals, we are
implicitly learning the full/joint distribution of language.

o Remember the chain rule:

P(𝑋1, … , 𝑋𝑡) = P(𝑋1) ς𝑖=1
𝑡 P(𝑋𝑖 |𝑋1, 𝑋2 … , 𝑋𝑖)

▪ Language Modeling ≜ learning prob distribution over language
sequence.

18

The Language Modeling Problem, Formally

▪ Learning to assign a probability to every sequence:

o Finite vocabulary Σ = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}

o Infinite set of sequences in this language Σ∗ = {𝑥1, 𝑥1𝑥2, 𝑥2𝑥3, 𝑥2𝑥1𝑥3, 𝑥4𝑥3𝑥1𝑥2, … }

෍

𝑒∈Σ∗

𝑝LM 𝑒 = 1,

𝑝LM 𝑒 ≥ 0, ∀𝑒 ∈ Σ∗

▪ Note, this statement does not specify the vocabulary (the atomic unit).

o Example units: words, characters, bytes, etc.

Note that this is a (joint) distribution
over sequences; different from (but

related to) the conditional.

19

Suppose we have a language model now.
What can we do with it? (how is it useful?)

20

Doing Things with Language Model

▪ What is the probability of …. “I like Johns Hopkins University”

“like Hopkins I University Johns”

21

Doing Things with Language Model

▪ What is the probability of ….

▪ LMs assign a probability to every sentence (or any string of words).

“I like Johns Hopkins University”

“like Hopkins I University Johns”

P(“I like Johns Hopkins University”)=10-5

P(“like Hopkins I University Johns”)=10-15

22

Doing Things with Language Model (2)

▪ We can rank sentences.

▪ While LMs show “typicality”, this may be a proxy indicator to other properties:

o Grammaticality, fluency, factuality, etc.

P(“I like Johns Hopkins University.”) > P(“I like John Hopkins University”)

P(“I like Johns Hopkins University.”) > P(“University. I Johns EOS Hopkins like”)

P(“JHU is located in Baltimore.”) > P(“JHU is located in Virginia.”)

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

23

Doing Things with Language Model (3)

▪ Can also generate strings!

▪ Let’s say we start “Johns Hopkins is ”

▪ Using this prompt as an initial condition, recursively sample from an LM:

1. Sample from P(X | “Johns Hopkins is ”) →“located”

2. Sample from P(X | “Johns Hopkins is located”) →“at”
3. Sample from P(X | “Johns Hopkins is located at”) →“the”

4. Sample from P(X | “Johns Hopkins is located at the”) →“state”
5. Sample from P(X | “Johns Hopkins is located at the state”) →“of”

6. Sample from P(X | “Johns Hopkins is located at the state of”) →“Maryland”
7. Sample from P(X | “Johns Hopkins is located at the state of Maryland”) →“EOS”

contextnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Notice this special word to
indicate end of sentences

24

Why Care About Language Modeling?

▪ Language Modeling is a subcomponent superset of many tasks:

o Summarization

o Machine translation

o Spelling correction

o Dialogue etc.

▪ Language Modeling is an effective proxy for language understanding.

o Effective ability to predict forthcoming words requires on understanding of
context/prefix.

25

You use Language Models every day!

26

You use Language Models every day!

27

Summary

▪ Language modeling: building probabilistic distribution over language.

▪ An accurate distribution of language enables us to solve many important
tasks that involve language communication.

▪ Next question: how do you actually estimate this distribution?

28

Language Modeling

with Counting

29

LMs as a Marginal Distribution

▪ Now the question is, how to estimate this distribution.

context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?
Let’s just count!

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)

30

Count how often
”the cat sat on the mat”

has appeared in the world (internet)!

Divide that by, the count of
”the cat sat on the”

in the world (internet)!

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?
Let’s just count!

31

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

How do we estimate these probabilities?
Let’s just count!

32

Challenge: Increasing 𝑛 makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

P(“mat” | “the cat sat on the”) ≈
count(“the cat sat on the mat”)

count(“the cat sat on the”)

33

Understanding Sparsity: A Thought Experiment

▪ Consider Shakespeare’s writing.

▪ Say, we want the count of any word-pair that Shakespeare knows

▪ The size vocab used by Shakespeare: |V|=29,066

▪ The number of potential word-pairs 29,066 x 29,066 ~ 844 million

o (some of them don’t make sense, but ok!)

▪ Of this, Shakespeare has used ~300K word-pair combinations in his writings!

▪ So, 99.96% of the possible bigrams are never seen (hence, have zero entries
for bigram counts).

34

Language Models: A History

▪ Shannon (1950): The redundancy and predictability (entropy) of English.

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Shannon (1950) built an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its non-descendants, given its parents.

35
[Prediction and Entropy of Printed English, Shanon 1950]

1st order approximation: 1 element

P(mat | the cat sat on the) ≈ P(mat | the)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

1st order approximation:

36

1 element

[Prediction and Entropy of Printed English, Shanon 1950]

P(mat | the cat sat on the) ≈ P(mat | the)

P(mat | the cat sat on the) ≈ P(mat | on the)

2 elements2nd order approximation:

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

1st order approximation:

37

1 element

[Prediction and Entropy of Printed English, Shanon 1950]

P(mat | the cat sat on the) ≈ P(mat | the)

P(mat | the cat sat on the) ≈ P(mat | on the)

2 elements2nd order approximation:

P(mat | the cat sat on the) ≈ P(mat | sat on the)

3 elements3rd order approximation:

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Then, we can use counts of approximate conditional probability.
Using the 3rd order approximation, we can:

P(mat | the cat sat on the) ≈ P(mat | sat on the) =
count(“sat on the mat”)

count(“on the mat”)

38
[Prediction and Entropy of Printed English, Shanon 1950]

P(mat | the cat sat on the) ≈ P(mat | sat on the)

3 elements3rd order approximation:

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

39

N-gram Language Models

▪ Terminology: n-gram is a chunk of n consecutive words:
o unigrams: “cat”, “mat”, “sat”, …

o bigrams: “the cat”, “cat sat”, “sat on”, …

o trigrams: “the cat sat”, “cat sat on”, “sat on the”, …

o four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

▪ n-gram language model:

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1) ≈ P(𝑋𝑡| 𝑋𝑡−𝑛+1, …, 𝑋𝑡−1) =
count(𝑋𝑡−𝑛+1,…, 𝑋𝑡−1, 𝑋𝑡)

count(𝑋𝑡−𝑛+1,…, 𝑋𝑡−1)

𝑛 − 1 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

40

How easy is it to build
an n-gram language model?

41

Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

42

Generation from N-Gram Models

▪ You can build a simple trigram Language Model over a 1.7 million words corpus in a few

seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the

Otherwise, seems reasonable!

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039
...

43

Generation from N-Gram Models

▪ Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039
...

Otherwise, seems reasonable!

44

Generation from N-Gram Models

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031
...

condition on this

Otherwise, seems reasonable!

▪ Now we can sample from this mode:

45

Generation from N-Gram Models

▪ Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018
...

condition on this

Otherwise, seems reasonable!

46

N-Gram Models in Practice

▪ Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

[adopted from Chris Manning]

47

N-Gram Language Models, A Historical
Highlight

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation Fred Jelinek

(1932-2010)

“Every time I fire a linguist, the performance of
the speech recognizer goes up”!!

48

n-gram language models are enough
to give us many interesting insights!

49

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

50

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Language models can tell us
something about us …

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

51

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

52

Limits of N-Grams LMs: Long-range Dependencies

▪ In general, count-based LMs are insufficient models of language
because language has long-distance dependencies:

“The computer which I had just put into the
machine room on the fifth floor crashed.”

53

Summary

▪ Learning a language model ~ learning conditional probabilities over language.

▪ One approach to estimating these probabilities: counting word co-occurrences.

▪ Challenges:

o Word co-occurrences become rare for long sequences. (the sparsity issue)

o But language understanding requires long-range dependencies.

▪ We need a better alternative!

▪ Next: Measuring quality of language models.

54

How Good are
Language Models?

55

Large Language Models

▪ A language model can predict the next word
based on the given context.

LMThe cat is on the _??_

roof
tree
moon
physics
the
protein
…

P(roof|X)=0.00
P(tree|X)=0.01
P(moon|X)=0.01
P(physics|X)=0.1
P(the|X)=0.1
P(protein|X)=0.3
...

[slide credit: Arman Cohan]

X := The cat is on the

56

Large Language Models

▪ A language model can predict the next word
based on the given context.

LM1

The cat is on the _??_

roof
tree
moon
physics
the
protein
…

P(roof|X)=0.00
P(tree|X)=0.01
P(moon|X)=0.01
P(physics|X)=0.1
P(the|X)=0.1
P(protein|X)=0.3
...

LM2

roof

tree

moon

physics

the

protein

…

P(roof|X)=0.14

P(tree|X)=0.13

P(moon|X)=0.001

P(physics|X)=0.0

P(the|X)=0.000

P(protein|X)=0.00

…

[slide credit: Arman Cohan]

Which LM is better?

X := The cat is on the

57

Evaluating Language Models

▪ Does our language model prefer good sentences to bad ones?

o Assign higher probability to “real” or “frequently observed” sentences

o Than “ungrammatical” or “rarely observed” sentences?

▪ We test the model’s performance on data we haven’t seen.

58

Evaluating Language Models

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

59

Evaluating Language Models: Example

59

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe
probabilityof someheldout
datausingourbigramtable

Setup:

o Train it on a suitable training documents.

o Evaluate their predictions on different, unseen documents.

o An evaluation metric tells us how well our model does on the test set.

A good language model

should assign a high
probability to held-out text!

60

Be Careful About Data Leakage!

Advice from a grandpa :

- Don’t allow test sentences to leak into into training set.

- Otherwise, you will assign it an artificially high probability (==cheating).

60

train
count(“on the mat”)

eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe
probabilityof someheldout
datausingourbigramtable

A good language model

should assign a high
probability to held-out text!

61

Quiz: Building Intuition

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 = (cat, sat, on, the, mat) from our natural data.

▪ We can show the probability that our language model assigns to this sentence with:

𝐏 𝑤1, 𝑤2, … , 𝑤𝑛

▪ A strong language model would assign a __ probability to this sentence. (high or low?)

▪ A weak language model would assign a __ probability to this sentence. (high or low?)

Next, we will define “perplexity”, a metric that quantifies LM’s
uncertainty with respect to a corpus of natural sentences.

62

Evaluation Metric for Language Modeling: Perplexity

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data.

▪ Perplexity is the inverse probability of the test set, normalized by the number of words:

▪ A measure of predictive quality of a language model.

▪ A LM with lower perplexity is better because it assigns a higher probability to the unseen
test corpus.

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

1

𝑛
normalizes the probability

as a function of length so

that longer sequences are

not assigned lower scores.

The negative power (.)− inverses

the score. So, a small probability

become a larger score – working

with small numbers is tedious.

63

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data.

▪ Perplexity is the inverse probability of the test set, normalized by the number of words:

Evaluation Metric for Language Modeling: Perplexity

But wait, we usually have conditionals not the joint distribution!

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

64

▪ Sample a sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data.

▪ Perplexity is the inverse probability of the test set, normalized by the number of words:

ppl 𝑤1, … , 𝑤𝑛 = 𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
−

1
𝑛

=
𝑛 1

𝐏 𝑤1, 𝑤2, … , 𝑤𝑛
=

𝑛

ෑ

𝑖=1

𝑛
1

𝐏 𝑤𝑖|𝑤<𝑖

= 2𝐻, where

chain rule

Evaluation Metric for Language Modeling: Perplexity

𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

65

▪ For a given a sampled sentence 𝑤1, 𝑤2, … , 𝑤𝑛 from our natural data:

▪ Notice that this consists of probability assigned to all the partial sentences
(i.e., next word probabilities).

▪ In practice, we prefer to use log-probabilities (also known as “logits”) since
probabilities are too small and hard to understand (e.g., 10^-18 vs -18).

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Putting Things Together: Perplexity Definition

66

▪ Quiz: let’s we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

▪ Answer: 𝑉 (size of the vocabulary) – why?

Intuition-building Quizzes (1)

67

▪ Quiz: let’s we evaluate a confused (!!) model of language, i.e., our model
has no idea what word should follow each context—it always chooses a
uniformly random word. What is the perplexity of this model?

▪ Sample a sentence from corpus: X=“The cat is on the mat.”

Intuition-building Quizzes (1)

∀𝑤 ∈ 𝑉: 𝐏 𝑤 𝑤1:𝑖−1) =
1

|𝑉|
⇒ ppl 𝐷 = 2

−
1

𝑛
𝑛 log2

1

𝑉 = |𝑉|

LM
For any partial sub-sentence:

X=The cat is on the _??_

roof
tree
moon
physics
…

P(roof|X)=1/|V|
P(tree|X)=1/|V|
P(moon|X)=1/|V|
P(physics|X)=1/|V|
…

68

▪ Quiz: let’s suppose we have a sentence 𝑤1, … , 𝑤𝑛 and it’s fixed. Our
language is model is mildly confused because it narrows down the plausible
continuations to 5 words, but it is confused among them. So it it assigns
probability 1/5 to the correct next word. What is perplexity of our model?

𝐻 = −
1

𝑛
log2

1

5
+ ⋯ + log2

1

5
= −log

1

5
⇒ ppl D = 5

Intuition-building Quizzes (2)

Intuition: the model is indecisive among 5 choices.

LM
A partial sentence:

X=The cat is on the _??_

P(roof|X)=1/5
P(tree|X)=1/5
P(table|X)=1/5
P(mat|X)=1/5
P(wall|X)=1/5
P(physics|X)=0
P(tesla|X)=0
…

Our LM has narrowed
down the right

continuation to one of
these five words.

69

▪ Quiz: let’s we evaluate an exact (!!) model of language, i.e., our model
always knows what exact word should follow a given context. What is the
perplexity of this model?

Intuition-building Quizzes (2)

∀𝑤 ∈ 𝑉: 𝐏 𝑤𝑖 𝑤1:𝑖−1) = 1 ⇒ ppl 𝐷 = 2−
1

𝑛
𝑛 log2 1 = 1

Intuition: the model is indecisive among 1 (the right!) choice!

LM

P(mat|X)=1
P(physics|X)=0
P(tesla|X)=0
…

�A partial sentence:

X=The cat is on the _??_

70

Perplexity: Summary

▪ Perplexity is a measure of model’s uncertainty about next word (aka ”average
branching factor”).

o The larger the number of vocabulary, the more options there to choose from.

o (the choice of atomic units of language impacts PPL — more on this later)

▪ Perplexity ranges between 1 and |V|.

▪ We prefer LMs with lower perplexity.

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

71

▪ Remember the ppl definition:

▪ Which expression corresponds to PPL of (1) unigram, (2) bigram and (3) trigram LM.

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Quiz: Perplexity for N-Grams

𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤𝑖−1) 𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝐻 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝐏 𝑤𝑖 𝑤𝑖−2, 𝑤𝑖−1)

72

Lower perplexity == Better Model

▪ Training on 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

[Mohit Iyyer]

Note these evaluations are done on data that
was not used for “counting.” (no cheating!!)

Lower is
better

73

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

[Language Modelling on Penn Treebank (Word Level)]

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

74

Lower perplexity == Better Model

The PPL of modern language models have consistently been going down.

[Scaling Laws, Jared Kaplan et al.]

76

▪ Compare the definition of PPL and cross-entropy:

ppl 𝑤1, … , 𝑤𝑛 = 2𝐻 , where 𝐻 = −
1

𝑛
σ𝑖=1

𝑛 log2 𝐏 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

Perplexity as An Implicit Cross-Entropy

Cross-entropy between two distributions 𝑞, 𝑝 :

CE(𝑞, 𝑝) = − ෍

𝑥∈𝒳

𝑞 𝑥 log 𝑝(𝑥)

The H term in PPL can be interpreted as cross-entropy between LM
distribution and the latent (unobserved) distribution of language. Why?

Hint: Monte Carlo Approximation + Law of Large Numbers.

77

Summary

▪ Language Models (LM): distributions over language

▪ Measuring LM quality: use perplexity on held-out data.

▪ Count-based LMs have limitations.

o Challenge with large N’s: sparsity problem — many zero counts/probs.

o Challenge with small N’s: lack of long-range dependencies.

▪ Next: Rethinking language modeling as a statistical learning problem.

78

Evaluating Language Models: Intrinsic vs Extrinsic

o Intrinsic: measure how good we are at modeling language

o Extrinsic: build a new language model, use it for some task (MT,
ASR, etc.)

78

train eval

Example:I usea bunchof New
YorkTimesarticlesto build a
bigramprobabilitytable

Now I’m going to evaluatethe
probabilityof someheldout
datausingourbigramtableextrinsic

eval

LM

79

Beyond Counting:

Language Models as
a Learning Problem

80

LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Discard anything beyond its context window

intoturningproblemsourand

context words in window target word

blah blah blah blah

81

LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Discard anything beyond its context window

intoturningproblemsourand

context words in window of size 4 target worddiscard

blah blah blah blah

82

LM as a Machine Learning Problem

▪ Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Discard anything beyond its context window

intoturningproblemsourand

context words in window of size 4 target word

83

A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict a target word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Training this model is basically optimizing its parameters Θ such that it assigns
high probability to the target word.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters
of neural network

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (

…

84

A Fixed-Window Neural LM

▪ It will also lay the foundation for the future models (recurrent nets, transformers, ...)

▪ But first we need to figure out how to train neural networks!

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters
of neural network

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

𝑓 (

How do you build
this function?

Neural Networks
for rescue! …

85

From Counting (N-Gram) to Neural Models

● n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

 “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, …]

NeurIPS 2000

86

Summary

▪ Language Modeling (LM), a useful predictive objective for language

▪ Perplexity, a measure of an LM’s predictive ability

▪ N-gram models (~1980 to early 2000’s),

o Early instances of LMs

o Difficult to scale to large window sizes

▪ Shallow neural LMs (early and mid-2000’s),

o We will learn about build neural networks in the next chapter.

o These will be effective predictive models based on feed-forward networks

	Slide 1: Language Modeling
	Slide 2: Recap: Self-Supervised Models
	Slide 3: Language Modeling: Motivation
	Slide 4: Language Modeling: Chapter Plan
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Probability of Upcoming Word
	Slide 16: LMs as a Marginal Distribution
	Slide 17: LMs as Implicit Joint Distribution over Language
	Slide 18: The Language Modeling Problem, Formally
	Slide 19
	Slide 20: Doing Things with Language Model
	Slide 21: Doing Things with Language Model
	Slide 22: Doing Things with Language Model (2)
	Slide 23: Doing Things with Language Model (3)
	Slide 24: Why Care About Language Modeling?
	Slide 25: You use Language Models every day!
	Slide 26: You use Language Models every day!
	Slide 27: Summary
	Slide 28
	Slide 29: LMs as a Marginal Distribution
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Understanding Sparsity: A Thought Experiment
	Slide 34: Language Models: A History
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: N-gram Language Models
	Slide 40
	Slide 41: Generation from N-Gram Models
	Slide 42: Generation from N-Gram Models
	Slide 43: Generation from N-Gram Models
	Slide 44: Generation from N-Gram Models
	Slide 45: Generation from N-Gram Models
	Slide 46: N-Gram Models in Practice
	Slide 47: N-Gram Language Models, A Historical Highlight
	Slide 48
	Slide 49: Pre-Computed N-Grams
	Slide 50: Pre-Computed N-Grams
	Slide 51: Pre-Computed N-Grams
	Slide 52: Limits of N-Grams LMs: Long-range Dependencies
	Slide 53: Summary
	Slide 54
	Slide 55: Large Language Models
	Slide 56: Large Language Models
	Slide 57: Evaluating Language Models
	Slide 58: Evaluating Language Models
	Slide 59: Evaluating Language Models: Example
	Slide 60: Be Careful About Data Leakage!
	Slide 61: Quiz: Building Intuition
	Slide 62: Evaluation Metric for Language Modeling: Perplexity
	Slide 63: Evaluation Metric for Language Modeling: Perplexity
	Slide 64: Evaluation Metric for Language Modeling: Perplexity
	Slide 65: Putting Things Together: Perplexity Definition
	Slide 66: Intuition-building Quizzes (1)
	Slide 67: Intuition-building Quizzes (1)
	Slide 68: Intuition-building Quizzes (2)
	Slide 69: Intuition-building Quizzes (2)
	Slide 70: Perplexity: Summary
	Slide 71: Quiz: Perplexity for N-Grams
	Slide 72: Lower perplexity == Better Model
	Slide 73: Lower perplexity == Better Model
	Slide 74: Lower perplexity == Better Model
	Slide 76: Perplexity as An Implicit Cross-Entropy
	Slide 77: Summary
	Slide 78: Evaluating Language Models: Intrinsic vs Extrinsic
	Slide 79
	Slide 80: LM as a Machine Learning Problem
	Slide 81: LM as a Machine Learning Problem
	Slide 82: LM as a Machine Learning Problem
	Slide 83: A Fixed-Window Neural LM
	Slide 84: A Fixed-Window Neural LM
	Slide 85: From Counting (N-Gram) to Neural Models
	Slide 86: Summary

