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Logistics Reminders

= Quiz 1: Thursday
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During the class (~1:15 mins)

All on paper

Closed-book (no formula sheet)

Content: everything we discuss before the class (before this slide)



Recap: Neural Nets

input layer

A powerful function-approximation tool.

Can be trained efficiently via Backpropagation.

Out focus here: how to use NNs for language modeling.
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Big Picture: Language Modeling + NNs

How do MLPs are for
Language modeling?
Probs over vocabulary
output layer : . : . |

input layer

mat

hidden layer
Remember NNs expect

numbers. How do you feed
a string to neural net?
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and our problems turning - chair

context words in window of size 4 target word
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Building First Neural LMs

1. Fixed-window neural language models
2. Atomic units of language

Chapter goal: Get more comfortable with thinking about the role of neural networks
in modeling distribution of language.
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Feeding Text to
Neural LMs



Feeding Text to Neural Nets

= Neural Nets expect numbers.
= How do you turn numbers into numbers?



Feeding Text to Neural Nets

= Associate each word with a randomly initialized vector.
= Pass the vector as input to the model.
= One can initialize these vectors with more informative values (e.g. Word2Vec).
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o Not used in practice.
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Feeding Text to Neural Net: In Practice

= In practice this is implemented in this way:
1. Turn each word into a unique index
2. Map each index into a one-hot vector
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Feeding Text to Neural Net: In Practice

= In practice this is implemented in this way:
1. Turn each word into a unique index
2. Map each index into a one-hot vector
3. Lookup the corresponding word embedding via matrix multiplication

_ - Question: what is the size
8 2 1 9 Z[Of this embedding matrix? J
6 5 4 0
000 10]x|716 2[=[1375 8§
One-hot vector 1 358 Hidden layer output
0 4 9 1

i _ ' i ' Note, this embedding matrix is a
1 Embedding Weight Matrix | trainable parameter of the model.
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Feeding Text to Neural Net: PyTorch

I
f Initialize a random ) # an Embedding module containing 10 tensors of size 3
embedding matrix n, d =10, 3
~ /:::§~ embedding = nn.Embedding(n, d)
( ) . .
Indices corresponding to # a batch of 2 samples of 4 indices each

input units (tokens) )::;;,»input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])

embedding(input)
- tensor([[[-0.0251, -1.6902, ©0.7172],
Embeddings corresponding [-0.6431, ©0.0748, ©0.6969],
to the inputs [ 1.4970, 1.3448, -0.9685],

.

[-0.3677, -2.7265, -0.1685]],

[[ 1.4970, 1.3448, -0.9685],
[ ©.4362, -0.4004, 0.9400],
[-0.

6431, ©.0748, 0.6969],



Fixed-Window
MLP Language Models




Recap: LMs

= Directly we train models on “conditionals”:

Some
The cat sat on the [AS » model

next
word context

//R

P(X¢| X1/ s Xe-1)
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next

Recap: Counting word contex

P(X¢| X1/ s Xe-1)

How do we estimate these probabilities?
Let’s just count!

count(“the cat sat on the mat”)

P(mat | the cat sat on the) =

count(“the cat sat on the”)

Challenge: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

14
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Recap Summary
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Language Models (LM): distributions over language

N-gram: language modeling via counting

Challenge with large N's: sparsity problem — many zero counts/probs.
Challenge with small N's: not very informative and lack of long-range dependencies.
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From Counting (N-Gram) to Neural Models

e Probabilistic n-gram models of text generation [Jelinek+ 198075, ...]
e Applications: Speech Recognition, Machine Translation

8. “Shallow” statistical/neural language models (2000's) [Bengio+ 1999 & 2001, ...

NeurlPS 2000 A Neural Probabilistic Language Model

Yoshua Bengio; Réjean Ducharme and Pascal Vincent
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 317
{bengioy,ducharme,vincentp} @iro.umontreal.ca
r.. - B , {
N
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A Fixed-Window Neural LM

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

and our problems  turning

Y J ! Y )
context words in window of size 4 target word
==
-«
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A Fixed-Window Neural LM

= Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

= Discard anything beyond its context window

blah—blah—blah—blah and our problems  turning

\ Y / L Y d
discard context words in window of size 4 target word
== B {
&
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A Fixed-Window Neural LM

= Given the embeddings of the context, predict a target word on the right side.
o Dropping the right context for simplicity -- not a fundamental limitation.

= Training this model is basically optimizing its parameters 0 such that it assigns

high probability to the target word.

of neural network

FFN(looo| [o90] [o90 ] — Q) mp

Iookup embeddlngs

[ Trainable parameters ]

and our problems turnmg -

context words in window of size 4 ta rget word

&3 loHNS H ;
-l [Bengio et al. 2003]

Probs over vocabulary
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A Fixed-Window Neural LM

= This is actually a pretty good model!
= It will also lay the foundation for the future models (e.g., transformers, ...)
= But first we need to figure out how to train neural networks!

Trainable parameters
of neural network

FFN (Feg mge e — O)mp ° |I

] Probs over vocabulary

mat |

Iookup embeddlngs ant :|
and our problems turning  [into chair |22
context words in window of size 4 ta rget'word

E-N
e |
-

[Bengio et al. 2003] 20



A Fixed-Window Neural LM

_ Prob
t [
o 1e — Cso‘cf:max
bed T
desk.—
chair —_— WZ
ooooooooooooooo|
Y
concatenate
(000 | [o00]| [o00]
A A 0
Iooj<up embeddiéngs

and our problems  turning -

context words in window of size 4 target word

-----

=¥ IS FIOPRINGS [Bengio et al. 2003]

output distribution
y = softmax(W,h)

hidden layer
h = f(Wix)

concatenated word embeddings

X = [V1, V3, U3, V4]
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A Fixed-Window Neural LM: Compared to N-
Grams

Erob,

Improvements over n-gram LM: || W
= Tackles the sparsity problem char " 2
= Model size is O(n) not O(exp(n)) — 000000000000000 |
n being the window size. *
n || valid. | test. concatenate
MLP10 6 104 | 109 ' 000 | | ooo | | ooo |
Back-off KN | 3 121 | 127 4 4 +
Back-off KN | 4 || 113 | 119 lookup embeddings
Back-oft KN | 5 112 ] 117 ahd c;ur probglems turr;ing -
| context words iljl window of size 4 Italrget'world

g JoHNs H » [Bengio et al. 2003, notes from Richard Socher] 22



A Fixed-Window Neural LM: Compared to N-
Grams

_ Prob_
ta:if o < | Sof'fmaxl
Improvements over n-gram LM: bed
. desk —| W
= Tackles the sparsity problem chatr 2
= Model size is O(n) not O(exp(n)) — PDEEEAIIDDDEEOE |
n being the window size. "
Remaining problems: concatenate

= Fixed window is too small

o 000 | | 000 | 000 | 000
= Enlarging window enlarges W — A A i —
Window can never be large enough!

= It's not deep enough to capture
nuanced contextual meanings and our  problems  turning into

Ioo!§<up em beddigngs

L

context words in window of size 4 target word
B2 1o e :
o [Bengio et al. 2003, notes from Richard Socher] 23



A Fixed-Window Neural LM: Going Deeper

I;:- 1I. OH
1|’-" ) -\\~

Revisiting Simple Neural Probabilistic Language Models
Simeng Sun and Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst
{simengsun, miyyer}@cs.umass.edu
Abstract Predict: years +— o
Recent progress in language modeling has Linear
been driven not only by advances in neural ar-
chitectures, but also through hardware and op- Add & Norm
timization improvements. In this paper, we re- The drought had FOF::M
visit the neural probabilistic language model » M - ’
(NPLM) of Bengio et al. (2003), which sim- /) -
ply concatenates word embeddings within a
fixed window and passes the result through a lasted now for ten million

feed-forward netwaork ta nredieot the next word

24
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[Sun and lyyer 2021]
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X
Yy
weight layer
Fix) Jrels .
weight layer identity

Uses residual connections (He et al. 2016)
— “information highways"” between layers.
(we saw them in the earlier chapter)

[Sun and lyyer 2021]


https://arxiv.org/abs/1512.03385

concatenate

Linear
A

N

Add & Norm
I

Feed-Forward
layer

A

XN J

| 000 | | 000
i s

| 000 |
A

\

Iooi<up em beddings

and our problems  turning -

mat
table
bed
desk

chair ©

"
.
.
.

A
context words in window of size 4

target word

Uses layer normalization (Ba et al. 2016)
which reduces variance across different
data/batches and makes the optimization
easier/faster.

[Sun and lyyer 2021]


https://arxiv.org/abs/1607.06450
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Use “dropout” to avoid overfitting.

Use ADAM optimizer (Kingma & Ba, 2017),
a variant of Stochastic Gradient Descent.

[Sun and lyyer 2021]


https://arxiv.org/pdf/1412.6980.pdf

Model # Params Val. perplexity

Transformer 148M 25.0
Prob NPLM-old 32M? 216.0
S ft ......
ta:i = NPLM-old (large) 221M3 128.2
Linear bed | NPLM 1L 123M 52.8
p L N - NPLM 4L 128M 38.3
Add & Norm | chair NPLM 16L 148M 31.7
l - Residual connections 148M 660.0
Feed-Forward - Adam, + SGD 148M 418.5
layer - Layer normalization 148M 33.0
3 A XN
Table 1: NPLM model ablation on WIKITEXT-103.
concatenate
000 000 000
00N [EOOON  [HOOoN Takeaways:
: Iooi<up embeddings e Depth helps
e Residual connections are important
and our problems  turning - P
‘ o | e Adam works (here) better than SGD
context words in window of size 4 target word

[Sun and lyyer 2021]
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Effect of window size:

150
—o— Transformer

125 —%— NPLM

—
g N O
o o1 O

N
(&)}

10 20 30 40 50
Prefix length (# tokens)

Fixed-WindowLM (NPLM) is better
than the Transformer (will see them
in 2 weeks!) with short prefixes but
worse on longer ones.

[Sun and lyyer 2021]



What Changed from N-Gram LMs to Neural LMs?

= What is the source of Neural LM’s strength?
= Why sparsity is less of an issue for Neural LMs?

= Answer: In n-grams, we treat all prefixes independently of each other! (even those
that are semantically similar)

students opened their __ Neural LMs are able to \

- — share information across
scholars opened their

students turned the pages of their preﬁxes and overcome the
students attentively perused their sparshyissue. A//




Summary
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Language Modeling (LM), a probabilistic model of language
N-gram models (~1980 to early 2000's)

o Difficult to scale to large n’s
Fixed-window Neural LM: first of many LMs we will see in this class

o Stronger than n-gram LMs
o But still fail at capturing longer contexts

150
1 —0— Transformer
. . S —%— NPLM
Next: other architectural alternatives. g 100
3
o 75
o
50
—
25

10 20 30 40 50
Prefix length (# tokens)



Atomic Units

of Language




What is the right level of granularity for

breaking up a sentence into vectors?

1 I' IIHOwIsII' litl' Igoingl' I.I

Input

|

}

) .S . Se.q:.\e.hce.
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The cat sat on the mat.



The cat sat on the mat.

words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s,

bytes??!
011000010111000001110000011011000110010101100001
111000001110000011011000116001010116000010111000 ...



The cat sat on the mat.

words split based on white space?

BOY

Which one should we use as the atomic

tars  DUIlding blocks for modeling language?
BOSK

/

bytes??!
011000010111000001110000011011000110010101100001
111000001110000011011000116001010116000010111000 ...



Cost of Using Word Units
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What happens when we encounter a word at test time that we've never seen in our
training data?
o Loguacious: Tendingtotalk a great deal; talkative.

o Omnishambles: A situationthat has been mismanaged, due to blunders and miscalculations.

o COVID-19: was unseen until 2020!
o Acknowleadgement: incorrect spelling of “Acknowledgement”

What about relevant words?: “dog” vs “dogs”; "run” vs “running”

We would need a very large vocabulary to capture common words in a language.
o Very large vocabulary size makes training difficult

What happens with words that we haven’t seen before?
o With word level tokenization, we have no way of understanding an unseen word!
o Also, not all languages have spaces between words like English!

39



Cost of Using Character Units

What if we use characters?

Pro:
o (1) small vocabulary, just the number

of unique characters in the training data.

o (2) fewer out-of-vocabulary tokens

Cost: much longer input sequences

o As we discussed, modeling long-range
dependences is very challenging.

o Representing long sequences is
computationally costly.
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Subword Tokenization: A Middle Ground

= Breaks words into smaller units that are indicative of their morphological construction.
o Developed for machine translation (Sennrich et al. 2016) :
Unfriendly
Subword tokenization is the best of both worlds
o Common words are preserved in the vocabulary Un
o Less common words are broken down into sub-words
o This handles the problem of unseen words and large vocabulary size

friend ly

Dominantly used in modern language models (BERT, T5, GPT, ...)

Relies on a simple algorithm called Byte Pair Encoding (Gage, 1994)

41
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("bert-base-cased")
sequence = "Using a Transformer network is simple”
print(tokenizer.tokenize(sequence))

['Using', 'a', ‘Transform', '##er', 'network', 'is', 'simple’]

print(tokenizer.convert tokens to ids(tokens))

[7993, 170, 13809, 23763, 2443, 1110, 3014]

tokenizer = AutoTokenizer.from pretrained(“albert-base-v1™)
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

[ using', ‘< a', ¢ transform', 'er', ¢ network', € is', ¢ simple’]



GPT4's Tokenizer

B JorNs HOPKINS https://platform.openai.com/tokenizer

OpenAIl's large language models (sometimes referred to as GPT's) process
text using tokens, which are common sequences of characters found in a
set of text. The models learn to understand the statistical
relationships between these tokens, and excel at producing the next
token in a sequence of tokens.

You can use the tool below to understand how a piece of text might be
tokenized by a language model, and the total count of tokens in that
piece of text.

Tt's important to note that the exact tokenization process varies between
models. Newer models like GPT-3.5 and GPT-4 use a different tokenizer

than our legacy GPT-3 and Codex models, and will produce different
tokens for the same input text.

Here is a math problem: 234566+64432 / (33345) * 0.1234

43


https://platform.openai.com/tokenizer

The Tokenization Pipeline

N Sentence .
Normalization > Splitting > Tokenlzat|0n>

Pos-
processing

)

= Converts text into a standard format to reduce variability.

oy
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o O O

Strip extra white spaces between words and sentences
Removing punctuations (“Hello, world!” — “Hello world")
Unicode normalization,

44



The Tokenization Pipeline

. Sentence ot Pos-
Normallzatlon> Splitting >Token|zat|on> processing >

= Divides text into individual sentences.
= Uses punctuation marks (., !, ?) and language-specific rules to identify boundaries.

& o 45



The Tokenization Pipeline

N Sentence .
Normallzatlon> Splitting >Token|zat|on

Pos-
processing

= Splits sentences into words or subwords.
o Hello world — [Hello, world]
o BPE, .... (will discuss this in a second)

46



The Tokenization Pipeline

N Sentence .
Normallzatlon> Splitting >Token|zat|on

Pos-
processing

Truncate to match the maximum length of the model
Pad all sentences in a batch to the same length

Add special tokens: for example:
o <UNK> (unknown word)
o <PAD> (padding for fixed-length sequences)
o <BOS> (beginning of sentence)
o <EOS> (end of sentence)

oUses a vocabulary (word-to-index mapping).

.

Finally, converts tokens into numerical IDs for model input.

47



Byte-pair Encoding (BPE) — An Example

= An algorithm for forming subword tokens based on a collection of raw text.

and there are no refueling stations anywhere
one of the city’s more unprincipled real state agents

.

Note that to do this
tokenization, I need to learn it BPE-based
by seeing lots of text. (similar tokenization
to model training)

[and, there, are, no, re, ##fueling, stations, anywhere,
one, of, the, city, ’s, more, un, ##princi, ##pled, real,

state, agents]

48


https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

Byte-pair Encoding (BPE) Training

Overview:

= We are given a large text corpus of text.

= Start by character-based tokenization.

= Repeatedly merge the most frequent adjacent tokens

for i in range (num_merges) :

pairs = get_stats (vocab)
best = max(pairs, key=pairs.get)
vocab = merge_vocab (best, vocab)

= Doing 30k merges => vocabulary of around 30k subwords. Includes many whole
words.

-3
=

49

[Anew algorithm for data compression, Gage 1994]


https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example

= Form base vocabulary of all characters that occur in the training set.

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u
Tokenizeddata:j hu jhu jhuhopkinshophopshops

Does not show the word
separator for simplicity.
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (2)

= Count the frequency of each token pair in the data
= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u
Tokenizeddata:j hu jhu jhuhopkinshophopshops
Token pair frequencies:
* j+h->3
* h+u->3
* h+o->4

* 0+p->4
e p+k->1
o k+i->1

51


https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (3)

= Choose the pair that occurs more, merge them and add to vocab.
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u

Tokenizeddata:j hu jhu jhuhopkinshophopshops
Token pair frequencies:

* j+h->3

* h+u->3

* h+0->4 <
* 0+p->4

e p+k->1

o k+i->1

52


https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (4)

= Choose the pair that occurs more, merge them and add to vocab.
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, S, U, hO (e

Tokenizeddata:j hu jhu jhuhopkinshophopshops
Token pair frequencies:

* j+h->3

* h+u->3

* h+0->4 <
* 0+p->4

e p+k->1

o k+i->1
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (5)

= Retokenize the data

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho
Tokenizeddata:j hu j hu jhuhopkinshophopshops
Token pair frequencies:

<4
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (6)

= Count the token pairs and merge the most frequent one

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho

Tokenizeddata:j hu j hu jhuhopkinshophopshops
Token pair frequencies:

* j+h->3
* h+u->3
* ho+p->4

e p+k->1
e k+i->1
e ji+n->1
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (7)

= Count the token pairs and merge the most frequent one

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho

Tokenizeddata:j hu j hu jhuhopkinshophopshops
Token pair frequencies:

* j+h->3
* h+u->3
c ho+p->4 <
e p+k->1
o k+i->1
* i+n->1
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (7)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop (e

Tokenizeddata:j hu j hu jhuhopkinshophopshops
Token pair frequencies:

* j+h->3
* h+u->3
c ho+p->4 <
e p+k->1
o k+i->1
* i+n->1

57


https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (7)

= Count the token pairs and merge the most frequent one

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop (e

Tokenizeddata:j h u j hu j huhop kins hop hop s hop s ¢
Token pair frequencies:

* j+h->3
* h+u->3
c ho+p->4 <
e p+k->1
o k+i->1
* i+n->1
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https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

BPE training: Example (8)

= Count the token pairs and merge the most frequent one

= Example:
Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop

Tokenizeddata:j h u j h u j h u hop k i ns hop hop s hop s
Token pair frequencies:

* j+h->3 <
* h+u->3
* hop+k->1

* hop+s->2
e k+i->2
* i+n->1

® nN+s->1
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BPE training: Example (8)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop, jh (e
Tokenizeddata:j h u j h u j h u hop k i ns hop hop s hop s

Token pair frequencies:

* j+h->3 <
* h+u->3
* hop+k->1

* hop+s->2
e k+i->2
* i+n->1

® nN+s->1
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BPE training: Example (8)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop, jh (e
Tokenizeddata: jh u jh u jh u hop k i n s hop hop s hop s ¢
Token pair frequencies:

* j+h->3 <
* h+u->3
* hop+k->1

* hop+s->2
e k+i->2
* i+n->1

® nN+s->1
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BPE training: Example (8)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenizeddata: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:
* jh+tu->3 ¢
* hop+k->1
* hop+s->2
e k+i->1
* i+n->1

° n+s->1
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BPE training: Example (8)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu <
Tokenizeddata: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:

* jh+tu->3 ¢

* hop+k->1

* hop+s->2

e k+i->1

* i+n->1

° n+s->1
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BPE training: Example (8)

= Count the token pairs and merge the most frequent one
= Example:

Our(veryfascinating@)trainingdata: “jhu jhu jhu hopkins hop hops hops”
Basevocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu <
Tokenized data: jhu jhu jhu hop k i n s hop hop s hop s (e
Token pair frequencies:

* jh+tu->3 ¢

* hop+k->1

* hop+s->2

e k+i->1

* i+n->1

° n+s->1
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Limitations of Subwords

* Loss of whole word semantics
« E.g., "Understand” -> [“Under”, “stand”] -Doesn’t mean “stand beneath”!
 Language Dependency: Even though subwords helps in multiple-languages
it may favor the structure of one language vs the other

» Hard to apply to languages with non-concatenative (e.g., Arabic) morphology

k-t-b “write” (root form)

kataba  “he wrote”

oS Kkattaba “he made (someone) write”
oIS iktataba  “he signed up”

Table 1: Non-concatenative morphology in Arabic.*
The root contains only consonants; when conjugat-
ing, vowels, and sometimes consonants, are interleaved
with the root. The root is not separable from its inflec-

o] ; tion via any contiguous split.
b y gl P Clark et al., 2021, “CANINE” 66



Alternatives: WordPieces

= WordPiece (Schuster & Nakajima, ICASSP 2012): merge by likelihood as measured by
language model, not by frequency

o While voc size < target:
1. Build a language model over your corpus
2. Merge tokens that lead to highest improvement in LM perplexity

= Jssues: What LM to use? How to make it tractable?

' [ Shuster & Nakajima 2012; Wu et al. 2016]
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https://arxiv.org/abs/1609.08144

Alternatives: Byte Encoding

= Use byte representation of words
o E.g., H -> 01010111

= Vocabulary size: 2A8=256
= Limitation:
o Makes the sequence length 4 to 5x longer

o At test time itis also slower to generate sentences. Why?
* Need to generate one character at a time

ER 100
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Summary

= Fundamental question: what should be the atomic unit of
representation?

= Words: too coarse
= Characters: too small

Unfriend|
= Subwords: y
o A useful representational choice for language.
o Capture language morphology .
un friend

ly
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Recap: input pipeline

| love Peperroni Pizza

!

&7 JoHNS HOPKINS
v
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Recap: input pipeline

| love Peperroni Pizza

!

!

""" love","_Pep", "per", "oni", " _pizza"]

53 [OHNS HOPRING
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Recap: input pipeline

| love Peperroni Pizza

!

!

1", " love","_Pep", "per", "oni", " _pizza"]

!

Embedding
matrix

ad

557 JOHNS TTOPR IS i
& JOHNS K Vocab size
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Recap: input pipeline

| love Peperroni Pizza

!

!

nmn nn nmn HUE

1", " love", " _Pep", "per", "oni", " _pizza"]

1 Input
Embedding
matrix
., 4
a
@ o HOMINS Vocab size Sequence length

74



= - = 4 |
Recap: input pipeline A3 & Norm
I .
Feed
Forward
A
| love Peperroni Pizza
| N> Add & Norm
T
Attention
| At
A\,
[III ll’ n _Iove ll’ "_Pep", llperll' llonill’ ll_pizzall] k
! Input Positional
matrix 4 ——
—
a

e JOHMNS HOPEINS .
V- Vocab size Sequence length 75
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