
Building Our First Neural LM

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

Logistics Reminders

▪ Quiz 1: Thursday

o During the class (~1:15 mins)

o All on paper

o Closed-book (no formula sheet)

o Content: everything we discuss before the class (before this slide)

3

Recap: Neural Nets

▪ A powerful function-approximation tool.

▪ Can be trained efficiently via Backpropagation.

▪ Out focus here: how to use NNs for language modeling.

4

Big Picture: Language Modeling + NNs

into

context words in window of size 4 target word

and our problems turning

, Θ)

Probs over vocabulary

mat

table

into

ant

chair

𝑓 (x
Remember NNs expect
numbers. How do you feed
a string to neural net?

How do MLPs are for
Language modeling?

5

Building First Neural LMs

1. Fixed-window neural language models

2. Atomic units of language

Chapter goal: Get more comfortable with thinking about the role of neural networks
in modeling distribution of language.

6

Feeding Text to
Neural LMs

7

Feeding Text to Neural Nets

▪ Neural Nets expect numbers.

▪ How do you turn numbers into numbers?

8

Feeding Text to Neural Nets

▪ Associate each word with a randomly initialized vector.

▪ Pass the vector as input to the model.

▪ One can initialize these vectors with more informative values (e.g. Word2Vec).

o Not used in practice.

9

Feeding Text to Neural Net: In Practice

▪ In practice this is implemented in this way:

1. Turn each word into a unique index

2. Map each index into a one-hot vector

0

1

2

10

Feeding Text to Neural Net: In Practice

▪ In practice this is implemented in this way:

1. Turn each word into a unique index

2. Map each index into a one-hot vector

3. Lookup the corresponding word embedding via matrix multiplication

Question: what is the size
of this embedding matrix?

Note, this embedding matrix is a
trainable parameter of the model.

11

Feeding Text to Neural Net: PyTorch

an Embedding module containing 10 tensors of size 3
n, d = 10, 3
embedding = nn.Embedding(n, d)
a batch of 2 samples of 4 indices each
input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
embedding(input)
tensor([[[-0.0251, -1.6902, 0.7172],

[-0.6431, 0.0748, 0.6969],
[1.4970, 1.3448, -0.9685],
[-0.3677, -2.7265, -0.1685]],

[[1.4970, 1.3448, -0.9685],
[0.4362, -0.4004, 0.9400],
[-0.6431, 0.0748, 0.6969],

Initialize a random
embedding matrix

Indices corresponding to
input units (tokens)

Embeddings corresponding
to the inputs

12

Fixed-Window

MLP Language Models

13

Recap: LMs

▪ Directly we train models on “conditionals”:

context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some
model

14

Recap: Counting

14

How do we estimate these probabilities?
Let’s just count!

P(mat | the cat sat on the) =
count(“the cat sat on themat”)

count(“the cat sat on the”)

Challenge: Increasing 𝑛 makes sparsity problems worse.
Typically, we can’t have 𝑛 bigger than 5.

Some partial solutions (e.g., smoothing and backoffs)
though still an open problem.

context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

15

Recap Summary

▪ Language Models (LM): distributions over language

▪ N-gram: language modeling via counting

▪ Challenge with large N’s: sparsity problem — many zero counts/probs.

▪ Challenge with small N’s: not very informative and lack of long-range dependencies.

16

From Counting (N-Gram) to Neural Models

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]
● Applications: Speech Recognition, Machine Translation

 “Shallow” statistical/neural language models (2000’s) [Bengio+ 1999 & 2001, …]

NeurIPS 2000

17

A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

intoturningproblemsourand

context words in window of size 4 target word

18

A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict the word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Discard anything beyond its context window

intoturningproblemsourand

context words in window of size 4 target worddiscard

blah blah blah blah

19

A Fixed-Window Neural LM

▪ Given the embeddings of the context, predict a target word on the right side.

o Dropping the right context for simplicity -- not a fundamental limitation.

▪ Training this model is basically optimizing its parameters Θ such that it assigns
high probability to the target word.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O FFN (, Θ)
lookup embeddings

Trainable parameters
of neural network

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

20

A Fixed-Window Neural LM

▪ This is actually a pretty good model!

▪ It will also lay the foundation for the future models (e.g., transformers, ...)

▪ But first we need to figure out how to train neural networks!

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O , Θ)
lookup embeddings

Trainable parameters
of neural network

Probs over vocabulary

mat

table

into

ant

chair

[Bengio et al. 2003]

FFN (

21

A Fixed-Window Neural LM

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Bengio et al. 2003]

concatenate

O O O O O O O O O O O O O O O

mat

table

bed

desk

chair

Prob

Softmax

𝑾1

𝑾2

concatenated word embeddings

𝑥 = [𝑣1, 𝑣2, 𝑣3, 𝑣4]

hidden layer

ℎ = 𝑓(𝑊1𝑥)

output distribution

y = softmax(𝑊2ℎ)

22

A Fixed-Window Neural LM: Compared to N-
Grams

Improvements over n-gram LM:

▪ Tackles the sparsity problem

▪ Model size is O(n) not O(exp(n)) —
n being the window size.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Bengio et al. 2003, notes from Richard Socher]

concatenate

O O O O O O O O O O O O O O O

mat

table

bed

desk

chair

Prob

Softmax

𝑾1

𝑾2

23

A Fixed-Window Neural LM: Compared to N-
Grams

Improvements over n-gram LM:

▪ Tackles the sparsity problem

▪ Model size is O(n) not O(exp(n)) —
n being the window size.

Remaining problems:

▪ Fixed window is too small

▪ Enlarging window enlarges 𝑾 —
Window can never be large enough!

▪ It’s not deep enough to capture
nuanced contextual meanings intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Bengio et al. 2003, notes from Richard Socher]

concatenate

O O O O O O O O O O O O O O O

mat

table

bed

desk

chair

Prob

Softmax

𝑾1

𝑾2

24

A Fixed-Window Neural LM: Going Deeper

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Feed-Forward
layer

Add & Norm

Feed-Forward
layer

Add & Norm

Feed-Forward
layer

Add & Norm

N layers

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Uses residual connections (He et al. 2016)
— “information highways” between layers.
(we saw them in the earlier chapter)

https://arxiv.org/abs/1512.03385

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Uses layer normalization (Ba et al. 2016)
which reduces variance across different
data/batches and makes the optimization
easier/faster.

https://arxiv.org/abs/1607.06450

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

Use ADAM optimizer (Kingma & Ba, 2017),
a variant of Stochastic Gradient Descent.

Use “dropout” to avoid overfitting.

https://arxiv.org/pdf/1412.6980.pdf

Takeaways:

● Depth helps

● Residual connections are important

● Adam works (here) better than SGD
intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

[Sun and Iyyer 2021]

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob
Effect of window size:

Fixed-WindowLM (NPLM) is better
than the Transformer (will see them
in 2 weeks!) with short prefixes but
worse on longer ones.

Add & Norm

32

What Changed from N-Gram LMs to Neural LMs?

▪ What is the source of Neural LM’s strength?

▪ Why sparsity is less of an issue for Neural LMs?

▪ Answer: In n-grams, we treat all prefixes independently of each other! (even those
that are semantically similar)

students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
...

Neural LMs are able to
share information across

these semantically-similar
prefixes and overcome the

sparsity issue.

33

Summary

▪ Language Modeling (LM), a probabilistic model of language

▪ N-gram models (~1980 to early 2000’s)

o Difficult to scale to large n’s

▪ Fixed-window Neural LM: first of many LMs we will see in this class

o Stronger than n-gram LMs

o But still fail at capturing longer contexts

▪ Next: other architectural alternatives.

34

Atomic Units
of Language

35

What is the right level of granularity for
breaking up a sentence into vectors?

The cat sat on the mat.

The cat sat on the mat.
words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001

1110000011100000110110001100101011000010111000 …

The cat sat on the mat.
words split based on white space?

BOS, The, cat, sat, on, the, mat, ., EOS

characters?

BOS, T, h, e, SPACE, c, a, t, SPACE, s, …

bytes??!

011000010111000001110000011011000110010101100001

1110000011100000110110001100101011000010111000 …

Which one should we use as the atomic
building blocks for modeling language?

39

Cost of Using Word Units

▪ What happens when we encounter a word at test time that we’ve never seen in our
training data?

o Loquacious:
o Omnishambles:
o COVID-19: was unseen until 2020!
o Acknowleadgement: incorrect spelling of “Acknowledgement”

▪ What about relevant words?: “dog” vs “dogs”; ”run” vs “running”

▪ We would need a very large vocabulary to capture common words in a language.

o Very large vocabulary size makes training difficult

▪ What happens with words that we haven’t seen before?
o With word level tokenization, we have no way of understanding an unseen word!

o Also, not all languages have spaces between words like English!

Tending to talk a great deal; talkative.

A situation that has been mismanaged, due to blunders and miscalculations.

40

Cost of Using Character Units

▪ What if we use characters?

▪ Pro:

o (1) small vocabulary, just the number
of unique characters in the training data.

o (2) fewer out-of-vocabulary tokens

▪ Cost: much longer input sequences

o As we discussed, modeling long-range
dependences is very challenging.

o Representing long sequences is
computationally costly.

41

Subword Tokenization: A Middle Ground

▪ Breaks words into smaller units that are indicative of their morphological construction.

o Developed for machine translation (Sennrich et al. 2016)

▪ Subword tokenization is the best of both worlds

o Common words are preserved in the vocabulary

o Less common words are broken down into sub-words

o This handles the problem of unseen words and large vocabulary size

▪ Dominantly used in modern language models (BERT, T5, GPT, …)

▪ Relies on a simple algorithm called Byte Pair Encoding (Gage, 1994)

[A new algorithm for data compression, Gage 1994]

[Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

['Using', 'a', ‘Transform', '##er', 'network', 'is', 'simple’]

tokenizer = AutoTokenizer.from_pretrained("albert-base-v1")
sequence = "Using a Transformer network is simple"
print(tokenizer.tokenize(sequence))

[‘_using', ‘_a', ‘_transform', 'er', ‘_network', ‘_is', ‘_simple’]

print(tokenizer.convert_tokens_to_ids(tokens))

[7993, 170, 13809, 23763, 2443, 1110, 3014]

43

GPT4’s Tokenizer

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

44

The Tokenization Pipeline

▪ Converts text into a standard format to reduce variability.

o Strip extra white spaces between words and sentences

o Removing punctuations (“Hello, world!” → “Hello world”)

o Unicode normalization,

o …

Normalization
Sentence
Splitting

Tokenization
Pos-

processing

45

The Tokenization Pipeline

▪ Divides text into individual sentences.

▪ Uses punctuation marks (., !, ?) and language-specific rules to identify boundaries.

Normalization
Sentence
Splitting

Tokenization
Pos-

processing

46

The Tokenization Pipeline

▪ Splits sentences into words or subwords.

o Hello world → [Hello, world]

o BPE, …. (will discuss this in a second)

Normalization
Sentence
Splitting

Tokenization
Pos-

processing

47

The Tokenization Pipeline

▪ Truncate to match the maximum length of the model

▪ Pad all sentences in a batch to the same length

▪ Add special tokens: for example:

o <UNK> (unknown word)

o <PAD> (padding for fixed-length sequences)

o <BOS> (beginning of sentence)

o <EOS> (end of sentence)

▪ Finally, converts tokens into numerical IDs for model input.

o Uses a vocabulary (word-to-index mapping).

Normalization
Sentence
Splitting

Tokenization
Pos-

processing

48

Byte-pair Encoding (BPE) – An Example

▪ An algorithm for forming subword tokens based on a collection of raw text.

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

[and, there, are, no, re, ##fueling, stations, anywhere,
one, of, the, city, ’s, more, un, ##princi, ##pled, real,
state, agents]

BPE-based
tokenization

and there are no refueling stations anywhere
one of the city’s more unprincipled real state agents

Note that to do this
tokenization, I need to learn it
by seeing lots of text. (similar

to model training)

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

49

Byte-pair Encoding (BPE) Training

Overview:

▪ We are given a large text corpus of text.

▪ Start by character-based tokenization.

▪ Repeatedly merge the most frequent adjacent tokens

▪ Doing 30k merges => vocabulary of around 30k subwords. Includes many whole
words.

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

50

BPE training: Example

▪ Form base vocabulary of all characters that occur in the training set.

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s

Does not show the word

separator for simplicity.

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

51

BPE training: Example (2)

▪ Count the frequency of each token pair in the data

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

52

BPE training: Example (3)

▪ Choose the pair that occurs more, merge them and add to vocab.

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

53

BPE training: Example (4)

▪ Choose the pair that occurs more, merge them and add to vocab.

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u h o p k i n s h o p h o p s h o p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• h + o -> 4
• o + p -> 4
• p + k -> 1
• k + i -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

54

BPE training: Example (5)

▪ Retokenize the data

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

55

BPE training: Example (6)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

56

BPE training: Example (7)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

57

BPE training: Example (7)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u ho p k i n s ho p ho p s ho p s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

58

BPE training: Example (7)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• ho + p -> 4
• p + k -> 1
• k + i -> 1
• i + n -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

59

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

60

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: j h u j h u j h u hop k i n s hop hop s hop s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

61

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:

• j + h -> 3
• h + u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

62

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:

• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

63

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jh u jh u jh u hop k i n s hop hop s hop s
Token pair frequencies:

• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

64

BPE training: Example (8)

▪ Count the token pairs and merge the most frequent one

▪ Example:

[A new algorithm for data compression, Gage 1994][Improving Neural Machine Translation Models with Monolingual Data, Sennrich et al. 2016]

Our (very fascinating) training data: “jhu jhu jhu hopkins hop hops hops”
Base vocab: h, i, j, k, n, o, p, s, u, ho, hop, jh, jhu
Tokenized data: jhu jhu jhu hop k i n s hop hop s hop s
Token pair frequencies:

• j h+u -> 3
• hop + k -> 1
• hop + s -> 2
• k + i -> 1
• i + n -> 1
• n + s -> 1
• ….

https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/P16-1009/

66

Limitations of Subwords
• Loss of whole word semantics

• E.g., “Understand” -> [“Under”, “stand”] -Doesn’t mean “stand beneath”!

• Language Dependency: Even though subwords helps in multiple-languages

it may favor the structure of one language vs the other

• Hard to apply to languages with non-concatenative (e.g., Arabic) morphology

67

Alternatives: WordPieces

▪ WordPiece (Schuster & Nakajima, ICASSP 2012): merge by likelihood as measured by
language model, not by frequency

o While voc size < target:

1. Build a language model over your corpus

2. Merge tokens that lead to highest improvement in LM perplexity

▪ Issues: What LM to use? How to make it tractable?

[Shuster & Nakajima 2012; Wu et al. 2016]

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37842.pdf
https://arxiv.org/abs/1609.08144

69

Alternatives: Byte Encoding

▪ Use byte representation of words

o E.g., H -> 01010111

▪ Vocabulary size: 2^8=256

▪ Limitation:

o Makes the sequence length 4 to 5x longer

o At test time it is also slower to generate sentences. Why?

• Need to generate one character at a time

[Byte-level machine reading across morphologically varied languages, Kenter et al. 2018;
ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models, Xue at al. 2021, and several others]

https://ojs.aaai.org/index.php/AAAI/article/view/12050
https://arxiv.org/pdf/2105.13626.pdf

70

Summary

▪ Fundamental question: what should be the atomic unit of
representation?

▪ Words: too coarse

▪ Characters: too small

▪ Subwords:
o A useful representational choice for language.

o Capture language morphology

71

Recap: input pipeline

I love Peperroni Pizza

tokenization

72

Recap: input pipeline

I love Peperroni Pizza

tokenization

["I ", " _love ", "▁Pep", "per", "oni", "▁pizza"]

73

Recap: input pipeline

I love Peperroni Pizza

tokenization

["I ", " _love ", "▁Pep", "per", "oni", "▁pizza"]

Embedding

matrix

𝑑

Vocab size

74

Recap: input pipeline

I love Peperroni Pizza

tokenization

Vocab size

Embedding

matrix

𝑑

["I ", " _love ", "▁Pep", "per", "oni", "▁pizza"]
Input

Input

Sequence length

𝑑

75

Recap: input pipeline

I love Peperroni Pizza

tokenization

Vocab size

Embedding

matrix

𝑑

["I ", " _love ", "▁Pep", "per", "oni", "▁pizza"]
Input

Input

Sequence length

𝑑

© The Johns Hopkins University 2023, All Rights Reserved.

	Slide 1: Building Our First Neural LM
	Slide 2: Logistics Reminders
	Slide 3: Recap: Neural Nets
	Slide 4: Big Picture: Language Modeling + NNs
	Slide 5: Building First Neural LMs
	Slide 6
	Slide 7: Feeding Text to Neural Nets
	Slide 8: Feeding Text to Neural Nets
	Slide 9: Feeding Text to Neural Net: In Practice
	Slide 10: Feeding Text to Neural Net: In Practice
	Slide 11: Feeding Text to Neural Net: PyTorch
	Slide 12
	Slide 13: Recap: LMs
	Slide 14: Recap: Counting
	Slide 15: Recap Summary
	Slide 16: From Counting (N-Gram) to Neural Models
	Slide 17: A Fixed-Window Neural LM
	Slide 18: A Fixed-Window Neural LM
	Slide 19: A Fixed-Window Neural LM
	Slide 20: A Fixed-Window Neural LM
	Slide 21: A Fixed-Window Neural LM
	Slide 22: A Fixed-Window Neural LM: Compared to N-Grams
	Slide 23: A Fixed-Window Neural LM: Compared to N-Grams
	Slide 24: A Fixed-Window Neural LM: Going Deeper
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32: What Changed from N-Gram LMs to Neural LMs?
	Slide 33: Summary
	Slide 34
	Slide 35: What is the right level of granularity for breaking up a sentence into vectors?
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Cost of Using Word Units
	Slide 40: Cost of Using Character Units
	Slide 41: Subword Tokenization: A Middle Ground
	Slide 42
	Slide 43: GPT4’s Tokenizer
	Slide 44: The Tokenization Pipeline
	Slide 45: The Tokenization Pipeline
	Slide 46: The Tokenization Pipeline
	Slide 47: The Tokenization Pipeline
	Slide 48: Byte-pair Encoding (BPE) – An Example
	Slide 49: Byte-pair Encoding (BPE) Training
	Slide 50: BPE training: Example
	Slide 51: BPE training: Example (2)
	Slide 52: BPE training: Example (3)
	Slide 53: BPE training: Example (4)
	Slide 54: BPE training: Example (5)
	Slide 55: BPE training: Example (6)
	Slide 56: BPE training: Example (7)
	Slide 57: BPE training: Example (7)
	Slide 58: BPE training: Example (7)
	Slide 59: BPE training: Example (8)
	Slide 60: BPE training: Example (8)
	Slide 61: BPE training: Example (8)
	Slide 62: BPE training: Example (8)
	Slide 63: BPE training: Example (8)
	Slide 64: BPE training: Example (8)
	Slide 66: Limitations of Subwords
	Slide 67: Alternatives: WordPieces
	Slide 69: Alternatives: Byte Encoding
	Slide 70: Summary
	Slide 71: Recap: input pipeline
	Slide 72: Recap: input pipeline
	Slide 73: Recap: input pipeline
	Slide 74: Recap: input pipeline
	Slide 75: Recap: input pipeline
	Slide 76

