
Recurrent Neural Language Models 

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/



2

Recap

▪ Neural Language Models: neural 
networks trained with LM 
objective.

▪ Fixed-window Neural LM: first of 
many neural LMs we will see 
in this class.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O 

lookup embeddings

xN

Feed-Forward 
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm



3

What Changed from N-Gram LMs to Neural 
LMs? 

▪ What is the source of Neural LM’s strength? 

▪ Why sparsity is less of an issue for Neural LMs? 

▪ Answer: In n-grams, we treat all prefixes independently of each other! (even those 
that are semantically similar) 

students opened their ___ 
pupils opened their ___ 
scholars opened their ___ 
undergraduates opened their ___ 
students turned the pages of their ___ 
students attentively perused their ___ 
...

Neural LMs are able to 
share information across 

these semantically-similar 
prefixes and overcome the 

sparsity issue. 
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Moving Beyond Feedforward Neural LMs 

▪ Are competitive at language modeling task 

▪ However, they 

o have difficulty in remembering long 
range dependencies 

o have a fixed window size 

▪ Key question: how to better capture 
long-range dependencies? 

▪ Alternative here: a new family of neural 
networks: recurrent nets 
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Chapter Goals

1. Introducing Recurrent Neural Language Models

2. RNNs: Pros and Cons 

3. Algorithms for sampling from LMs 

4. Bonus: Pre-trained RNN language models

Chapter goals — Getting comfortable with RNNs for language modeling and the use 
of LMs for solving down-stream tasks. 
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Recurrent 
Neural Nets
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Infinite Use of Finite Model

▪ Main question: how can a finite model a long (infinite) context? 

▪ Solution: recursion! (recursive use of a model) 

▪ RNNs are a family of neural networks introduced to learn sequential data 
via recursive dynamics.

▪ Inspired by the temporality of human thoughts.

[Jeff Elman, “Finding structure in time,” 1990]
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Recurrent Neural Networks (RNNs)

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)

▪ In the diagram, 𝑓(. ) looks at some input 𝑥𝑡 and its 
previous hidden state ℎ𝑡−1 and outputs a revised 
state ℎ𝑡. 

▪ A loop allows information to be passed from one 
step of the network to the next.

[Jeff Elman, “Finding structure in time,” 1990]

Input vector at told statenew state
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Unrolling RNN

▪ The diagram above shows what happens if we unroll the loop.

▪ A recurrent neural network can be thought of as multiple copies of the same network, 
each passing a message to a successor. 

[Jeff Elman, “Finding structure in time,” 1990]

time
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LMs w/ Recurrent Neural Nets

▪ We feed the words one at a time to the RNN. 

▪ A predictive head uses the latest embedding vector to produce a probability over the 
vocabulary. 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
contextnext word
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Training RNNs 
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23

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

ො𝑦2

𝑥1 𝑥2

𝑉

𝐶𝐸 𝑦2, ො𝑦2𝐶𝐸 𝑦1, ො𝑦1Error

She went

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )

RNN: Forward Propagation

[Slide credit: Chris Tanner]



24

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3

𝑥1 𝑥2 𝑥3

𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3𝐶𝐸 𝑦1, ො𝑦1Error

She went to

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )

RNN: Forward Propagation

[Slide credit: Chris Tanner]



25

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3 ො𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

She went to class

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )

RNN: Forward Propagation

[Slide credit: Chris Tanner]



26

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3 ො𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

She went to class

During training, regardless of our output predictions,

we feed in the correct inputs

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )

RNN: Forward Propagation

[Slide credit: Chris Tanner]



27

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

ො𝑦

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )

RNN: Forward Propagation

[Slide credit: Chris Tanner]



28

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

ො𝑦

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )
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28
[Slide credit: Chris Tanner]
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Backward Step
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To update our weights (e.g.Θ), we calculate the gradient of 

our loss w.r.t. the repeated weight matrix (e.g., 
𝝏𝑳

𝝏Θ
).

[Slide credit: Chris Tanner]

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log( ො𝑦𝑤

𝑖 )



30

Backward Step
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31
[Slide credit: Chris Tanner]
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Training RNNs: Summary

▪ RNNs can be trained using “backpropagation through time.”

▪ Can be viewed as applying normal backprop to the unrolled network.

▪ Model’s learnable parameters  Θ

1. Compute ℒ(Θ) for a batch of sentences

2. Compute gradients ∇Θℒ(Θ)

3. Update the weights and then repeat 

backpropagated 
feedback

the sat oncat

books
laptops

ℒ
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Examples
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RNN: Generation

▪ When trained on Harry Potter text, it generates:

35
Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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RNNs: Generation 

▪ RNN-LM trained on Obama speeches:

36https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

The United States will step up to the cost of a new 
challenges of the American people that will share the fact 
that we created the problem. They were attacked and so that 
they have to say that all the task of the final days of war 
that I will not be able to get this done.

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0


37

RNNs in Practice 

▪ RNN-LM trained on food recipes:

37https://gist.github.com/nylki/1efbaa36635956d35bcc

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 c  Coconut milk
3    Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and 
simmer until firm. Serve hot in bodied fresh, mustard, orange and cheese. Combine the 
cheese and salt together the dough in a large skillet; add the ingredients and stir 
in the chocolate and pepper.
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Evaluation LMs with Perplexity (2016)

38

n-gram model →

Source: https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/

Increasingly  
complex RNNs

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/
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Summary 

▪ RNNs: Repeated use of finite structure. 

▪ A natural fit for language modeling. 

▪ Next: let’s summarize the pros and cons. 
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RNN-LMs: 
Pros and Cons
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RNNs: Advantages

o Model size doesn’t increase for longer inputs —

reusing a compact set of  model parameters. 

o Computation for step t can (in theory) use

information from many steps back

41
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RNNs: Weaknesses

▪ Recurrent computation is slow and difficult to parallelize. 
o Next week: self-attention mechanism, better at 

representing long sequences and also parallelizable. 

▪ While RNNs in theory can represent long sequences, they 
quickly forget portions of the input.

▪ Vanishing/exploding gradients. 

42
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Vanishing/Exploding Gradient Problem: Intuition

▪ Backpropagated errors multiply at each layer, resulting in 

Figure from Graham Neubig
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▪ Backpropagated errors multiply at each layer, resulting in 
exponential decay (if derivative is small) 
or growth (if derivative is large).

▪ Makes it very difficult train deep 
networks, or simple recurrent 
networks over many time steps.

backpropagated 
feedback

the sat oncat

books
laptops

ℒ

∇ℒ 𝐖ℎ = 𝐉ℒ 𝐖𝐿−1
T
=෍

𝑡=0

𝐉ℒ 𝒉(𝑡) 𝐉𝒉(𝑡) 𝐖ℎ

T

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

chain rule

Vanishing/Exploding Gradient Problem
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Vanishing/Exploding Gradient Problem

▪ Note: instability of matrix powers can be determined from their eigenvalues.  

backpropagated 
feedback

the sat oncat

books
laptops

ℒ

chain rule

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

Gradient signal from far away is lost. 
So, model weights are updated only 

with respect to near effects, not long-
term effects.
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Coping with Exploding Gradients 

▪ Gradient clipping:
o If the norm of the gradient is greater than some threshold, scale it down

before applying SGD update.

▪ Intuition: take a step in the same direction, but a smaller step

46
[“On the difficulty of training recurrent neural networks”, Pascanu et al, 2013]

http://proceedings.mlr.press/v28/pascanu13.pdf
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Coping with Vanishing Gradients 

▪ Using residual connections:
o lots of new deep architectures (RNN or otherwise) add direct 

connections,  thus allowing the gradient to flow)

47
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RNNs: Difficulty in Learning Long-Range 
Dependencies (3)

▪ While RNNs in theory can represent long sequences, in practice 
teaching them about long-range dependencies is non-trivial.

▪ Changes to the architecture makes it easier for the RNN to preserve 
information over many timesteps 
o Long Short-Term Memory (LSTM)  [Hochreiter and Schmidhuber 1997, Gers+ 2000]

o Gated Recurrent Units (GRU) [Cho+ 2014]

48
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RNNs: Difficulty in Learning Long-Range 
Dependencies (3)

▪ While RNNs in theory can represent long sequences, in practice 
teaching them about long-range dependencies is non-trivial.

▪ Changes to the architecture makes it easier for the RNN to preserve 
information over many timesteps 
o Long Short-Term Memory (LSTM)  [Hochreiter and Schmidhuber 1997, Gers+ 2000]

o Gated Recurrent Units (GRU) [Cho+ 2014]

▪ Many of these variants were the dominant architecture of  In 2013–2015. 

▪ We will not cover these alternative architecture in favor or spending more 
time on more modern developments. 

49
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Summary

▪ RNNs provide a compact model, regardless of sequence size. In theory, this is great! 

▪ In practice, however: 

o They still struggle with remembering long-range dependencies. 

o Training them is not difficult because of vanishing/exploding gradients. 

▪ Despite these limits, RNNs provided improvements at the time that they were 
introduced and laid the foundation for the future progress. 
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Bonus: 
Pre-training RNN 

Language Models
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Recap: Recurrent Neural Networks

▪ Repeated use of a finite model

5
2

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking
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Recap: Encoder-Decoder Architectures

▪ It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]”
Some 
model
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Recap: Encoder-Decoder Architectures
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Contextual Meaning of Words 

▪ Earlier word embedding methods (e.g., Word2Vec, GloVe) learn a single “static” 
vector for each word.

o Static embeddings are not flexible and expressive enough.

[Deep contextualized word representations, Peters et al. 2018]

• The children love to play outside in the park. 

• She went to see a play at the local theater. 
• They play the piano beautifully. 

Information from context is 
necessary to capture the correct 

meaning of the word.

https://arxiv.org/abs/1802.05365


56

ELMo: First Major Self-Supervised LM

▪ Goal: get highly rich, contextualized embeddings (word tokens) that depend on 
the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

• The children love to play outside in the park. 

• She went to see a play at the local theater. 
• They play the piano beautifully. 

[2.05, -1.57, 1.07, 1.37, 0.32] [0.45, -0.26, 0.49, 2.37, -1.2] [-0.37, 0.17, -0.36, 0.12, 0.18] 

https://arxiv.org/abs/1802.05365
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ELMo: First Major Self-Supervised LM

▪ Goal: get highly rich, contextualized embeddings (word tokens) that depend on 
the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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Extending RNNs to Both Directions

▪ An RNN limitation: Hidden variables capture only one side of the context. 

▪ Solution: Bi-Directional RNNs

58

RNN Bi-directional RNN
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ELMo: First Major Self-Supervised LM

▪ Use both directions of context (bi-directional), with increasing abstractions (stacked) 

o Two LSTMs in different directions — capture both directions

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


60

ELMo: First Major Self-Supervised LM

▪ Linearly combine all abstract representations  (hidden layers) and optimize w.r.t. a 
particular  task (e.g., sentiment classification)

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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ELMo: Some Details 

▪ Train a forward language model by modeling prob 
of each word, given its left context. 

▪ Similarly, train a backward language model, conditioned on the right context.

▪ Some training details: 

o Use 4096 dim hidden states

o Residual connections from 
the first to second layer 

o Trained 10 epochs on 1B Word Benchmark

o Results in perplexity of ~39

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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Adapting ELMo Representations for Tasks

▪ Fine-tune classifiers using
contextualized word representations 
extracted from ELMo. 

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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ELMo: Evaluation

▪ SQuAD: question answering 

▪ SNLI: textual entailment 

▪ SRL: semantic role labeling 

▪ Coref: coreference resolution 

▪ NER: named entity recognition 

▪ SST-5: sentiment analysis

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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Experimental Results

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365


[Deep contextualized word representations, Peters et al. 2018]

Syntactic information is better represented at lower layers
while semantic information is captured a higher layers

POS tagging Word-Sense Disambiguation

https://arxiv.org/abs/1802.05365


66

▪ Let’s say I want to train a model for sentiment analysis

▪ In the past, I would simply train a supervised model on Word2Vec representation of 
review sentences (e.g., HW2). 

A ton of unlabeled 
text

A self-
supervised 

model step 1:
self-supervised 

pretraining

A self-
supervised 

model

A ton of unlabeled 
text

A broader lesson: 
Pre-training + Fine-tuning 

step 2:
supervised
fine-tuning
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A broader lesson: 
Pre-training + Fine-tuning 

Contextual representation of LMs is much stronger than word-level ones. 

Now that we have Fixed-Window LM, we can use it to build better classifiers! 

A ton of unlabeled 
text

A self-
supervised 

model step 1:
self-supervised 

pretraining

A self-
supervised 

model

A ton of unlabeled 
text

step 2:
supervised
fine-tuning



68

Summary

▪ ELMo: Stacked Bi-directional LSTMs

▪ ELMo yielded incredibly good contextualized embeddings, which 
yielded SOTA results when applied to many NLP tasks.

▪ Main ELMo takeaway: given enough [unlabeled] training data, 
having tons of parameters model is useful — the system can 
determine how to best use context. 

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365
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Summary

▪ Recurrent Neural Networks 
o A family of neural networks 

that allow architecture for 
inputs of variable length 

▪ RNN-LM: LM based on RNNs 

▪ A notable example: ELMo

▪ Cons: 
o Sequential processing 

o While in theory it maintain infinite history, in practice it suffers from long-range 
dependencies. 
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