JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Recurrent Neural Language Models

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

Recap —_—

Linear bed |
A desk *

) chair !
Add & Norm |
]

= Neural Language Models: neural
networks trained with LM

objective. b
) XN)
concatenate
» Fixed-window Neural LM: first of ' 0ooo | | 0oo| | o000 | | 00O
many neural LMs we will see ? 3 3 3
in this class. Ioo!<up embeddi:ngs
and our problems turning -
context words irY1 window of size 4 ta rget'word

E-N
=y

L e . 2

What Changed from N-Gram LMs to Neural
LMs?

= What is the source of Neural LM’s strength?
= Why sparsity is less of an issue for Neural LMs?

= Answer: In n-grams, we treat all prefixes independently of each other! (even those
that are semantically similar)

students opened their ___ Neural LMs are ableto)
pupils opened their

scholars opened their _ share information across

undergraduates opened their these semantically-similar

students turned the pages of their L preﬁxes and overcome the
students attentively perused their _
sparsity Issue. J

£ i
. i 3

Moving Beyond Feedforward Neural LM

tf -

table |

desk *

Are competitive at language modeling task

However, they

o have difficulty in remembering long
range dependencies

, hair |
Linear chair
A

N

Add & Norm |
|

Feed-Forward

o have a fixed window size 'anr
-] xN
= Key question: how to better capture concatenate g
long-range dependencies?
= Alternative here: a new family of neural : L2901 [feoer] [fecer] [fego

4

networks: recurrent nets :
lookup embeddings

and our problems turning -

context words in window of size 4 target'word
Q oHNs H 4

Chapter Goals

Introducing Recurrent Neural Language Models
RNNs: Pros and Cons
Algorithms for sampling from LMs

AN W N =

Bonus: Pre-trained RNN language models

Chapter goals — Getting comfortable with RNNs for language modeling and the use
of LMs for solving down-stream tasks.

Recurrent
Neural Nets

Infinite Use of Finite Model

oy
. |

Main question: how can a finite model a long (infinite) context?

Solution: recursion! (recursive use of a model)

RNNs are a family of neural networks introduced to learn sequential data
via recursive dynamics.

Inspired by the temporality of human thoughts.

[Jeff Elman, “Finding structure in time,” 1990]

Recurrent Neural Networks (RNNs)

[new state k [old state L i Input vector at t]

hy = f(he—q1,Xt)

* |Inthe diagram, f(.) looks at some input x; and its L
previous hidden state h;_; and outputs a revised

h)
]
state h;. é

= Aloop allows information to be passed from one
step of the network to the next.

57 JoHNs H .
o [Jeff Elman, “Finding structure in time,” 1990]

Unrolling RNN

= The diagram above shows what happens if we unroll the loop.

e 200 8
La - A A A—— A
5 © © - o
-
time
= A recurrent neural network can be thought of as multiple copies of the same network,
each passing a message to a successor.

[Jeff Elman, “Finding structure in time,” 1990]

LMs w/ Recurrent Neural Nets

® ® @
T ;T T T P(thxll "'IXt—l)

A A » A
6 o

A
= We feed the words one at a time to the RNN.

next word context

= A predictive head uses the latest embedding vector to produce a probability over the
vocabulary.

Example Inference (Generation) with RNN

2 3 4
SN

Hidden layer) o o)
@) d O d O - O

O o O O

Inputlayer The brown dog ran

Example Inference (Generation) with RNN

2 3 4
SN

Hidden layer) o o)
@) d O d O - O

O o O O

Inputlayer The brown dog ran

Example Inference (Generation) with RNN

(L hE | RE hP
o o .o fel| . 8
Hidden layer) o o _’) o
ind s imd =l
O @) O O O

A
wn
\%

Inputlayer The brown dog ran

13

Example Inference (Generation) with RNN

out

G R I h?

o .18 & el 8

Hidden layer) o o _’) o
S imd S md = gl lnd

O O O @) O

Inputlayer The brown dog ran <s>

14

Example Inference (Generation) with RNN

out
O O I I
3B BBl L BLE
Hidden layer) o o) o O
3= 181 13118 | = 18] [3
O O O @) O O

Inputlayer The brown dog ran <s> out

15

Example Inference (Generation) with RNN

out the

O A A I
L BB L BLE
Hidden layer) o o) o O
md gl lnd 5
O @) O O O O

Inputlayer The brown dog ran <s> out

16

Example Inference (Generation) with RNN

out the
RE R hE hE hD - hD D
o 1ol [el . 8. e
Hidden layer O—}O_}O_"O _}O-}O-}O
@) @) @) O @) @) O
0 @ O O O O O

Inputlayer ~ The brown dog ran <s> out the

Example Inference (Generation) with RNN

out the door
)
A R R
O O O O o |[©
Hidden layer §_}§_}§_’.<8) _}l §-}§
O @) O O O
the

Inputlayer The brown dog ran <s> out

18

Example Inference (Generation) with RNN

out the door

i 11

T S R , h3 h}
3 BB L BLELBLE
Hidden layer 19 ®) O 9) Q O @)
nd e g5 -’ ad g 9 >
O @) O O O O
nput layer The brown dog ran <s> out the door

Example Inference (Generation) with RNN

out the door while barking <s>

woow o [R w
o [l 1B el Bl B e 8 8 I8
Hidden layer | 6| wpy |O] = [Of ==Pp{ |O 9 O O O O O
o "ol Tl "o -’o-’o-’o"o"o"o
@) O @) @) O @) @ @)

Inputlayer ~ The brown dog ran <S> out the door while barking

=

Training RNNs

|

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error CEGLID
Y1
Output layer Q000

Al

Hidden layer Q0000

w

Input layer 0000
X1
. She

g JOHNS HOPKINS [Slide credit: Chris Tanner] 22

RNN: Forward Propagation

Error CE(yLIY CE(y%,9%)

Y1 Y2
Output layer 0000 Q000

ot ot

Hidden layer Q0000) =P (00000

vt i

Input layer 0000 0000
She went

&3 loHNS H
L

CE(y'9%) ==) yblog9h)

wWEV

[Slide credit: Chris Tanner]

23

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error CEGy", M) CE(Y*, 9% CE(y*,3%)
Y1 V2 V3
Output layer 0000 Q000 0000

TE SR S

Hidden layer Q0000) =P (00000

vt vt wt

¢<
@)
@)
@)
@)
@)

Input layer 0000 0000 I.... I
X1 X9 X3
She went to

W rirmossec, [Slide credit: Chris Tanner] 24

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error CE(y 9" CE(y*,9%) CE(y*,9%) CE(y*, 9%
V1 V2 V3 Va
Output layer 0000 0000 000 Q000

4 ot s 4 s 1

Hidden layer Q0000) =P (00000

vt vt Wt wt

¢<
@)
3
@)
O
¢—<
i
@)
@)
@)
O

Input layer 0000 Q000 IQQQQ | 0000
X1 X9 X3 X4
She went to class

W rirmossec, [Slide credit: Chris Tanner] 25

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error

Output layer

Hidden layer

Input layer

During training, regardless of our output predictions,
we feed in the correct inputs

[Slide credit: Chris Tanner]

26

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error CE(y 9" CE(y*,9%) CE(y*,9%) CE(y*, 9%
went? over? class? after?
Output layer 5} 0000 0000 000 Q000

4 ot s 4 s 1

14 %
Hidden layer Q0000)] =P (COOCOQ0) =P (OO000) =P (CO00O

vt vt Wt wt

Input layer 0000 Q000 IQQQQ | 0000
She went to class

W rirmossec, [Slide credit: Chris Tanner] 27

CE(y'9%) ==) yblog9h)

RNN: Forward Propagation

Error CE(y 9" CE(y*,9%) CE(y®, 9% CE(y*, 9%
went? over? class? after?
Output layer 5} Q000 Q000 0000 0000

TE JERE SEE S

Hiddenlayer (OO OO) == (OOOOQ0) =P (OO000) =P (OO000

Input layer

Our total loss is simply the average loss across all T time steps

28
[Slide credit: Chris Tanner] 28

Backward Step

CE(y'9%) = = D ¥ilogi)

wWEV

To update our weights (e.g.0), we calculate the gradient of

: : oL
our loss w.r.t. the repeated weight matrix (e.g., 7=). CE(y*,9%)

after?
Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results. 0000
Al
Q0000

L [Slide credit: Chris Tanner] 29

Backward Step

To update our weights (e.g.0), we calculate the gradient of

: : oL
our loss w.r.t. the repeated weight matrix (e.g., %0).

Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

oL
av

CE(y*, 5%

[Slide credit: Chris Tanner]

30

Backward Step

To update our weights (e.g.0), we calculate the gradient of

: : oL
our loss w.r.t. the repeated weight matrix (e.g., %0).

Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

oL
av

CE(y*, 5%

[Slide credit: Chris Tanner]

31

Backward Step

To update our weights (e.g.0), we calculate the gradient of

: : oL
our loss w.r.t. the repeated weight matrix (e.g., %0).

Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

oL
av

CE(y*, 5%

[Slide credit: Chris Tanner]

32

backpropagated

feedback
| | L----I
Training RNNs: Summary P
books I
l laptops :
¢
= RNNs can be trained using “backpropagation through time.” :
= Can be viewed as applying normal backprop to the unrolled network. "U |
h(0) h) h(®2) h®) h&) !
= Model’s learnable parameters © ° © © o| |
P O | Wyq=-r¥Wr-re1 W torWr et
) of e[T|ef T le|
@ e (o i|® 1 |®o
I 7'y ~
1. Compute £(0) for a batch of sentences W« We«: W W<
2. Compute gradients Vg £(0) @ o) e o)
. o o @}
3. Update the weights and then repeat eWlg| e?) el® 8 el)
C_) (@) (@) (@)
E /\E /\E /\E
the cat sat on
&3 JoHNS HOPKINS (1) x?) z3) 4)

Examples

RNN: Generation

= When trained on Harry Potter text, it generates:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

SQ_L_I_[‘,Cl_e__I:I\'”_ leep- g/harry-potter-written-by-a al-intelligence-8a9431803da6
g JOHNSTIOPRIR 35

35

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

RNNs: Generation

= RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new
challenges of the American people that will share the fact
that we created the problem. They were attacked and so that
they have to say that all the task of the final days of war
that I will not be able to get this done.

htfps/fhedium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abdl8a2eagy 36

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

RNNs in Practice

= RNN-LM trained on food recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and
simmer until firm. Serve hot in bodied fresh, mustard, orange and cheese. Combine the
cheese and salt together the dough in a large skillet; add the ingredients and stir
in the chocolate and pepper.

htt gl fgistgithub.com/nylki/zefbaa36635956d35bcc 3737

Evaluation LMs with Perplexity (2016)

n-gram model —

Increasingly
complexRNNs

&1 Jorns Sourees https://eng
'

Model Perplexity

Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51:.3
RNN-2048 + BlackOut sampling (Ji1 et al., 2015) 68.3
Sparse Non-negative Matrix factorization (Shazeer et 52.9
al., 2015)

LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
Ours large (2-Tayer LSTM-2048) 39.8

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/

Summary

= RNNs: Repeated use of finite structure.
= A natural fit for language modeling.

= Next: let's summarize the pros and cons.

39

RNN-LMs:
Pros and Cons

RNNs: Advantages % e
psy

S

o Model size doesn’t increase for longer inputs —
reusing a compact set of model parameters.

(5

>
=
W
&
b~
=
'
L

]
)

1443

E

oooo]?[oooo]
ﬁ[oooo]?[occc

o Computation for step t can (in theory) use
information from many steps back

o)

eV

&

=
E E 113
the students opened their
2z 22 e z®

&3 10HNS HOPEINS 41
@ JOHNS HOK 41

RNNs: Weaknesses

b
lapt
= Recurrent computation is slow and difficult to parallelize. O‘[1

o Next week: self-attention mechanism, better at -
representing long sequences and also parallelizable.

30

O N

=
=
>
c
=
o

=

[oooo]?[oo\oo]%»

eoee@
RS
(eeeoe]
=

Wi
= While RNNs in theory can represent long sequences, they U
quickly forget portions of the input.

®

m’\
®
=

()

S|

[oooo]g{ooto]
[oooo]§>
[oooo]?[oooo]

S|
>

>

FE
the studentsng)ne
X

20 7 3@

=
=
=

= Vanishing/exploding gradients.

—F
>
LS

-8
0

&3 1oHNs H : 42
W v 42

Vanishing/Exploding Gradient Problem: Intuition

= Backpropagated errors multiply at each layer, resulting in

dl

d,

S

: [
=tiny =small
h,
h, = RNN > h, >/ RNN
s s
xl x2

h

2

RNN

h,

A

X

3

-

h

3

s

Figure from Graham Neubig

g—i =med. % =large

square_err

i
y*

43

backpropagated

Vanishing/Exploding Gradient Problem ; |
| laptops E

|
= Backpropagated errors multiply at each layer, resulting in m
exponential decay (if derivative is small)

or growth (if derivative is large). U i
= Makes it very difficult train deep R(0) R x¢) ¥6) Ney !
networks, or simple recurrent e) Q@ 5) Qe I
networks over many time steps. 0| Wi rWrore1 Wit rWrre1-—1
@ e 1 | @ 1 | @ ! (0] :
O e o (e 1 (o i
1) 1 I) I
T T W« W, <« W, « W, <1
VW, =(Jc(W_p) = Z (]L(h(t)) Jpo (Wh)) o ° ° °
t=0 (D) 8 e 8 e® 8 e® 8
). (@) =1, (A@)], 2 (AD) x ... X J) (R®) J(R®) @)))
“ - / E /\E /\E /\E
chainrule the cat sat on
= Js H 3 m(l) w(z) w(?’) w(4)

& 44

backpropagated

feedback
| | | | L----I
Vanishing/Exploding Gradient Problem ;
OO0OKS
l laptops E
Lo
= Note: instability of matrix powers can be determined from their eigenvaluem
N :
4 I U
Gradient signal from far away is lost. h() ht) h(2) h) h'%) !
So, model weights are updated only : W, < :—-an-:- W5 ':"Wﬁt':' -4
with respect to near effects, not long- @ Of 1 lef e ! lo| !
0] 0] | @ 1@ 1 | @ I
term effects. L P
_ % W« (W |[We |[We
o o) o) o)
o) 8 e(2) 8 e 8 @) 8
1:(hO) = 1o (KON (hD) x o xSy k) 1(a®) (o) (o) (8] |8
“ - / E /\E /\E /\E
chainrule the cat sat on
&3 JoHNS HOPKINS (1) x?) z3) 4)

45

Coping with Exploding Gradients

= Gradient clipping:
o If the norm of the gradient is greater than some threshold, scale it down
before applying SGD update.
= Intuition: take a step in the same direction, but a smaller step

Algorithm 1 Pseudo-code for norm clipping
9E

g+ B0

if ||g|| > threshold then
~ threshold 4
&< Tel 8

end if

46

http://proceedings.mlr.press/v28/pascanu13.pdf

Coping with Vanishing Gradients

= Using residual connections:
o lots of new deep architectures (RNN or otherwise) add direct
connections, thus allowing the gradient to flow)

S; 1 S;
H H
X:—1 X
Res-RNN

47

a7

RNNs: Difficulty in Learning Long-Range
Dependencies (3)

= While RNNs in theory can represent long sequences, in practice
teaching them about long-range dependencies is non-trivial.

= Changes to the architecture makes it easier for the RNN to preserve
information over many timesteps
o Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997, Gers+ 2000]
o Gated Recurrent Units (GRU) [Cho+ 2014]

RNN LSTM

(= i 1B\ Cr fe 1
t-1 >

L A 4 bll’m
"'I ‘R o>
| G

o

el =

48

E-N
=

) Xy X ry
L ITING 5 48

oy
ol

RNNs: Difficulty in Learning Long-Range
Dependencies (3)

= While RNNs in theory can represent long sequences, in practice
teaching them about long-range dependencies is non-trivial.
= Changes to the architecture makes it easier for the RNN to preserve
information over many timesteps
o Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997, Gers+ 2000]
o Gated Recurrent Units (GRU) [Cho+ 2014]
= Many of these variants were the dominant architecture of In 2013—2015.

= We will not cover these alternative architecture in favor or spending more
time on more modern developments.

49
49

Summary

= RNNSs provide a compact model, regardless of sequence size. In theory, this is great!

= In practice, however:
o They still struggle with remembering long-range dependencies.
o Training them is not difficult because of vanishing/exploding gradients.

= Despite these limits, RNNs provided improvements at the time that they were
introduced and laid the foundation for the future progress.

50

Bonus:

Pre-training RNN
Language Models

Recap: Recurrent Neural Networks

= Repeated use of a finite model

“Sorry” Harry shouted, panicking
Output layer 0000 0000 0000

I T S T

4 %
Hidden layer O0000)] == (COOOQ0) =p (OO000) =p (OO00O

vt wt cwt ot

Input layer 0000 0000 (0000) 0000
X1 X9 X3 X4

<START> “Sorry” Harry shouted,

Recap: Encoder-Decoder Architectures

= [t is useful to think of generative models as two sub-models.

“The cat sat on the |S4E|’ Some —
model ——

53

Encoder RNN

Recap: Encoder-Decoder Architectures

I l

Source

Information
bottleneck

|__

Target

|__

]

|

Y
NNY 49p02=a(d

54

Contextual Meaning of Words

= Earlier word embedding methods (e.g., Word2Vec, GloVe) learn a single “static”
vector for each word.

o Static embeddings are not flexible and expressive enough.

« The children love to play outside in the park.
« She went to see a play at the local theater.
« They play the piano beautifully.

Information from context is
necessary to capture the correct
meaning of the word.

|

55

L

[

]

https://arxiv.org/abs/1802.05365

ELMo: First Major Self-Supervised LM

= @Goal: get highly rich, contextualized embeddings (word tokens) that depend on
the entire sentence in which a word is used.

————_-_-—----~
-

« The children love to play outside in the park. \\

« She went to see a play at the local theater. \N

« They play the piano b&autifully. \
1 N

o
¢ \ v

[-0.37,0.17,-0.36,0.12, 0.18] [0.45,-0.26, 0.49, 2.37,-1.2] [2.05,-1.57,1.07,1.37,0.32]

56

L

[Deep contextualized word representations, Peters etal. 2018]

https://arxiv.org/abs/1802.05365

ELMo: First Major Self-Supervised LM

= @Goal: get highly rich, contextualized embeddings (word tokens) that depend on
the entire sentence in which a word is used.

ELMO stick improvisation this
[I | [

Embeddings R i s O s 6 S o

Let's to skit

ELMo

Words to embed

57

https://arxiv.org/abs/1802.05365

Extending RNNs to Both Directions

= An RNN limitation: Hidden variables capture only one side of the context.
= Solution: Bi-Directional RNNs

oo * 7

KR LTy
56 N

RNN Bi-directional RNN

58
58

ELMo: First Major Self-Supervised LM

= Use both directions of context (bi-directional), with increasing abstractions (stacked)
o Two LSTMs in different directions — capture both directions

LSTM
Layer #2

LSTM

Layer #1

Embedding

Forward Language Model Backward Language Model

JEEE [o 5 s
[L L] o ¢ o
- -w -w w w w

LT T LT T T] LT [Irrr] [TT1 [TTT]

59

[Deep contextualized word representations, Peters etal. 2018]

https://arxiv.org/abs/1802.05365

ELMo: First Major Self-Supervised LM

= Linearly combine all abstract representations (hidden layers) and optimize w.r.t. a
particular task (e.g., sentiment classification)

Forward Language Model Backward Language Model

v @@ @ @O@

II .I- .I .l I .'_.'j:l:l L] I. f L] ‘.I [] Ill
LSTM [o o [0 o
Layer #1 -w -w w w
Embedding (L1 [1] L1 [T 111 [T 1] T T 11

60

[Deep contextualized word representations, Peters etal. 2018]

https://arxiv.org/abs/1802.05365

Output Vel
Layer

ELMo: Some Details - |
Bidirectional LSTM &—
Layer A
= Train a forward language model by modeling prob T
of each word, given its Ieft context. mowe (o)
Layer e
D 11, B HP(Ik ST Y
= Similarly, train a backward language model, conditioned on the right context.
p(ty, ...t Hp(tkltk_,_l,... ~)

= Some training details:
o Use 4096 dim hidden states

o Residual connections from
the first to second layer

o Trained 10 epochs on 1B Word Benchmark
o Results in perplexity of ~39

-:“ . I 1
Al i . .
[Deep contextualized word representations, Peters et al. 2018]

61

https://arxiv.org/abs/1802.05365

Adaptmg ELMo Representations for Tasks

out = softmax(W; - z,)
A

= Fine-tune classifiers using
contextualized word representations I I z2 = f(W2 - z1)
extracted from ELMo.

. z1 = f(W1 - av)

a E really ood %book E
C1

B3 1ovs Hi R | NS
= [

https://arxiv.org/abs/1802.05365

AT
s
The robot vaoLe my magj with a wrench.

|
E L M 0 : Eva I u atl o n breaker thing broken instrument

ARGO ARGH1 ARG2

= SQUAD: question answering

. SNLI teXtuaI entallment ds and Platt are both injured and will
= SRL: semantic role labeling

miss Engiand 's opening World Cup

= Coref: coreference resolution
= NER: named entity recognition
= SST-5: sentiment analysis

qualifier against Moldova on Sunday .

Barack Obama nominated Hillary Rodham
Clinton as his secretary of state on Monday.
He chose her because she had foreign
affairs experience as a former First Lady.

B JouNs H

05

Al 3 SCHOO! I . . : 3]

https://arxiv.org/abs/1802.05365

Experimental Results

=3 R T
B JOHMNS HOPKIMNS
o T

SNLI NER SQuUAD Coref SRL SST-5

LA Previous SOTA lmmm Baseline
[Deep contextualized word representations, Peters et al. 2018]

64

https://arxiv.org/abs/1802.05365

The bank can guarantee ill eventually cover future
tuition costs because it invests in adjustable-rate

(ee) (2) | 70 securities.
bank” Gloss: a financial institution that uccept»l depositsland channels the

money into lending activities

| like to read books
Examples: “he cashed a check at the bank™, “that bank holds Ih
on my home”
bank® Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank™, “*he sat on the bank of
the river and watched the currents™
oo POS tagging Word-Sense Disambiguation
: 71

97.8

70 A
97.6 - 97 3 69.0
97.4 -) 69
97.2 4

s | 67.4
97.0 A 96 8
96.8 67 1
96.6 -

L : || ‘ | 66— — i -
First Layer Second Layer First Layer Second Layer
First Layer > Second Layer Second Layer > First Layer

Syntactic information is better represented at lower layers
while semantic information is captured a higher layers

[Deep contextualized word representations, Peters etal. 2018]

https://arxiv.org/abs/1802.05365

A broader lesson:
Pre-training + Fine-tuning

= Let's say I want to train a model for sentiment analysis

= In the past, I would simply train a supervised model on Word2Vec representation of
review sentences (e.g., HW2).

A self- W A self-
supervised — supervised
model J step 1: step 2: model
I self-supervised supervised

pretraining fine-tuning

A ton of unlabeled
text

A ton of unlabeled
text

66

oy
. |

A broader lesson:
Pre-training + Fine-tuning

Contextual representation of LMs is much stronger than word-level ones.
Now that we have Fixed-Window LM, we can use it to build better classifiers!

e e e e ———— -

,", A self- w \: A self-
supervised — supervised
| MECE J step1: | step 2: model
self-supervised: supervised

oretraining | fine-tuning

A ton of unlabeled
text

A ton of unlabeled
Y text

S _—— -

e i o e = e e e e e e e e e e e e e e e =

67

Summary

= ELMo: Stacked Bi-directional LSTMs

= ELMo yielded incredibly good contextualized embeddings, which
yielded SOTA results when applied to many NLP tasks.

= Main ELMo takeaway: given enough [unlabeled] training data,
having tons of parameters model is useful — the system can
determine how to best use context.

L . . - o] 68

https://arxiv.org/abs/1802.05365

Summary

Recurrent Neural Networks

o A family of neural networks
that allow architecture for
inputs of variable length

RNN-LM: LM based on RNNs
A notable example: ELMo

= Cons:
o Sequential processing

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

«UNROLLED»

o While in theory it maintain infinite history, in practice it suffers from long-range

_dependencies.

L]
-

69

	Slide 1: Recurrent Neural Language Models
	Slide 2: Recap
	Slide 3: What Changed from N-Gram LMs to Neural LMs?
	Slide 4: Moving Beyond Feedforward Neural LMs
	Slide 5: Chapter Goals
	Slide 6
	Slide 7: Infinite Use of Finite Model
	Slide 8: Recurrent Neural Networks (RNNs)
	Slide 9: Unrolling RNN
	Slide 10: LMs w/ Recurrent Neural Nets
	Slide 11: Example Inference (Generation) with RNN
	Slide 12: Example Inference (Generation) with RNN
	Slide 13: Example Inference (Generation) with RNN
	Slide 14: Example Inference (Generation) with RNN
	Slide 15: Example Inference (Generation) with RNN
	Slide 16: Example Inference (Generation) with RNN
	Slide 17: Example Inference (Generation) with RNN
	Slide 18: Example Inference (Generation) with RNN
	Slide 19: Example Inference (Generation) with RNN
	Slide 20: Example Inference (Generation) with RNN
	Slide 21
	Slide 22: RNN: Forward Propagation
	Slide 23: RNN: Forward Propagation
	Slide 24: RNN: Forward Propagation
	Slide 25: RNN: Forward Propagation
	Slide 26: RNN: Forward Propagation
	Slide 27: RNN: Forward Propagation
	Slide 28: RNN: Forward Propagation
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Training RNNs: Summary
	Slide 34
	Slide 35: RNN: Generation
	Slide 36: RNNs: Generation
	Slide 37: RNNs in Practice
	Slide 38: Evaluation LMs with Perplexity (2016)
	Slide 39: Summary
	Slide 40
	Slide 41: RNNs: Advantages
	Slide 42: RNNs: Weaknesses
	Slide 43: Vanishing/Exploding Gradient Problem: Intuition
	Slide 44: Vanishing/Exploding Gradient Problem
	Slide 45: Vanishing/Exploding Gradient Problem
	Slide 46: Coping with Exploding Gradients
	Slide 47: Coping with Vanishing Gradients
	Slide 48: RNNs: Difficulty in Learning Long-Range Dependencies (3)
	Slide 49: RNNs: Difficulty in Learning Long-Range Dependencies (3)
	Slide 50: Summary
	Slide 51
	Slide 52: Recap: Recurrent Neural Networks
	Slide 53: Recap: Encoder-Decoder Architectures
	Slide 54: Recap: Encoder-Decoder Architectures
	Slide 55: Contextual Meaning of Words
	Slide 56: ELMo: First Major Self-Supervised LM
	Slide 57: ELMo: First Major Self-Supervised LM
	Slide 58: Extending RNNs to Both Directions
	Slide 59: ELMo: First Major Self-Supervised LM
	Slide 60: ELMo: First Major Self-Supervised LM
	Slide 61: ELMo: Some Details
	Slide 62: Adapting ELMo Representations for Tasks
	Slide 63: ELMo: Evaluation
	Slide 64: Experimental Results
	Slide 65
	Slide 66: A broader lesson: Pre-training + Fine-tuning
	Slide 67: A broader lesson: Pre-training + Fine-tuning
	Slide 68: Summary
	Slide 69: Summary

