
Recurrent Neural Language Models

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

Recap

▪ Neural Language Models: neural
networks trained with LM
objective.

▪ Fixed-window Neural LM: first of
many neural LMs we will see
in this class.

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

xN

Feed-Forward
layer

concatenate

Linear

Softmax mat

table

bed

desk

chair

Prob

Add & Norm

3

What Changed from N-Gram LMs to Neural
LMs?

▪ What is the source of Neural LM’s strength?

▪ Why sparsity is less of an issue for Neural LMs?

▪ Answer: In n-grams, we treat all prefixes independently of each other! (even those
that are semantically similar)

students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
...

Neural LMs are able to
share information across

these semantically-similar
prefixes and overcome the

sparsity issue.

4

Moving Beyond Feedforward Neural LMs

▪ Are competitive at language modeling task

▪ However, they

o have difficulty in remembering long
range dependencies

o have a fixed window size

▪ Key question: how to better capture
long-range dependencies?

▪ Alternative here: a new family of neural
networks: recurrent nets

intoturningproblemsour

context words in window of size 4 target word

and

O O O O O O O O O O O O

lookup embeddings

xN

Feed-Forward
layer

concatenate

Linear

Softmax

mat

table

bed

desk

chair

Prob

Add & Norm

5

Chapter Goals

1. Introducing Recurrent Neural Language Models

2. RNNs: Pros and Cons

3. Algorithms for sampling from LMs

4. Bonus: Pre-trained RNN language models

Chapter goals — Getting comfortable with RNNs for language modeling and the use
of LMs for solving down-stream tasks.

6

Recurrent
Neural Nets

7

Infinite Use of Finite Model

▪ Main question: how can a finite model a long (infinite) context?

▪ Solution: recursion! (recursive use of a model)

▪ RNNs are a family of neural networks introduced to learn sequential data
via recursive dynamics.

▪ Inspired by the temporality of human thoughts.

[Jeff Elman, “Finding structure in time,” 1990]

8

Recurrent Neural Networks (RNNs)

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)

▪ In the diagram, 𝑓(.) looks at some input 𝑥𝑡 and its
previous hidden state ℎ𝑡−1 and outputs a revised
state ℎ𝑡.

▪ A loop allows information to be passed from one
step of the network to the next.

[Jeff Elman, “Finding structure in time,” 1990]

Input vector at told statenew state

9

Unrolling RNN

▪ The diagram above shows what happens if we unroll the loop.

▪ A recurrent neural network can be thought of as multiple copies of the same network,
each passing a message to a successor.

[Jeff Elman, “Finding structure in time,” 1990]

time

10

LMs w/ Recurrent Neural Nets

▪ We feed the words one at a time to the RNN.

▪ A predictive head uses the latest embedding vector to produce a probability over the
vocabulary.

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
contextnext word

11

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸

3ℎ
𝐸

4ℎ
𝐸

The brown dog ran

Example Inference (Generation) with RNN

12

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸

3ℎ
𝐸

4ℎ
𝐸

The brown dog ran

Example Inference (Generation) with RNN

13

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸

3ℎ
𝐸

4ℎ
𝐸

The brown dog ran

1ℎ
𝐷

<s>

Example Inference (Generation) with RNN

14

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

1ℎ
𝐷

<s>

Example Inference (Generation) with RNN

out

15

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> out

Example Inference (Generation) with RNN

out

16

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> out

Example Inference (Generation) with RNN

out the

17

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s>

3ℎ
𝐷

Example Inference (Generation) with RNN

theout

out the

18

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s>

3ℎ
𝐷

door

Example Inference (Generation) with RNN

theout

out the

19

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s>

3ℎ
𝐷

4ℎ
𝐷

door

Example Inference (Generation) with RNN

the doorout

out the

20

Input layer

Hidden layer

1ℎ
𝐸

2ℎ
𝐸 ℎ𝐸 ℎ𝐸

3 4

The brown dog ran

ℎ𝐷 ℎ𝐷
1 2

<s> the door while barking

3ℎ
𝐷

4ℎ
𝐷

out

ℎ𝐷 ℎ𝐷
5 6

door while barking <s>

Example Inference (Generation) with RNN

out the

21

Training RNNs

22

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑥1

𝐶𝐸 𝑦1, ො𝑦1Error

She

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

23

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

ො𝑦2

𝑥1 𝑥2

𝑉

𝐶𝐸 𝑦2, ො𝑦2𝐶𝐸 𝑦1, ො𝑦1Error

She went

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

24

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3

𝑥1 𝑥2 𝑥3

𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3𝐶𝐸 𝑦1, ො𝑦1Error

She went to

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

25

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3 ො𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

She went to class

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

26

Input layer

Hidden layer

Output layer

𝑊

𝑈

ො𝑦1

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

ො𝑦2 ො𝑦3 ො𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

She went to class

During training, regardless of our output predictions,

we feed in the correct inputs

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

27

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

ො𝑦

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

RNN: Forward Propagation

[Slide credit: Chris Tanner]

28

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦2, ො𝑦2 𝐶𝐸 𝑦3, ො𝑦3 𝐶𝐸 𝑦4, ො𝑦4𝐶𝐸 𝑦1, ො𝑦1Error

ො𝑦

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

Our total loss is simply the average loss across all 𝑻 time steps

RNN: Forward Propagation

28
[Slide credit: Chris Tanner]

29

Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉 𝑉

went? over? class? after?

𝐶𝐸 𝑦4, ො𝑦4

ො𝑦
Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of

our loss w.r.t. the repeated weight matrix (e.g.,
𝝏𝑳

𝝏Θ
).

[Slide credit: Chris Tanner]

𝐶𝐸 𝑦𝑖 , ො𝑦𝑖 = −෍

𝑤∈𝑉

𝑦𝑤
𝑖 log(ො𝑦𝑤

𝑖)

30

Backward Step

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉3

She went to class

went? over? class?

𝐶𝐸 𝑦4, ො𝑦4

ො𝑦

To update our weights (e.g.Θ), we calculate the gradient of

our loss w.r.t. the repeated weight matrix (e.g.,
𝝏𝑳

𝝏Θ
).

𝝏𝑳

𝝏𝑽

Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

[Slide credit: Chris Tanner]

31

Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉3

went? over? class?

𝐶𝐸 𝑦4, ො𝑦4

ො𝑦

𝝏𝑳

𝝏𝑽

𝑉2

Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of

our loss w.r.t. the repeated weight matrix (e.g.,
𝝏𝑳

𝝏Θ
).

31
[Slide credit: Chris Tanner]

32
32

Backward Step

Output layer

𝑈 𝑈 𝑈 𝑈
𝑉3

went? over? class?

𝐶𝐸 𝑦4, ො𝑦4

ො𝑦
Using the chain rule, we trace the derivative all the way
back to the beginning, while summing the results.

𝝏𝑳

𝝏𝑽

𝑉2𝑉1

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g.Θ), we calculate the gradient of

our loss w.r.t. the repeated weight matrix (e.g.,
𝝏𝑳

𝝏Θ
).

[Slide credit: Chris Tanner]

33

Training RNNs: Summary

▪ RNNs can be trained using “backpropagation through time.”

▪ Can be viewed as applying normal backprop to the unrolled network.

▪ Model’s learnable parameters Θ

1. Compute ℒ(Θ) for a batch of sentences

2. Compute gradients ∇Θℒ(Θ)

3. Update the weights and then repeat

backpropagated
feedback

the sat oncat

books
laptops

ℒ

34

Examples

35

RNN: Generation

▪ When trained on Harry Potter text, it generates:

35
Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

36

RNNs: Generation

▪ RNN-LM trained on Obama speeches:

36https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

The United States will step up to the cost of a new
challenges of the American people that will share the fact
that we created the problem. They were attacked and so that
they have to say that all the task of the final days of war
that I will not be able to get this done.

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

37

RNNs in Practice

▪ RNN-LM trained on food recipes:

37https://gist.github.com/nylki/1efbaa36635956d35bcc

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 c Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and
simmer until firm. Serve hot in bodied fresh, mustard, orange and cheese. Combine the
cheese and salt together the dough in a large skillet; add the ingredients and stir
in the chocolate and pepper.

38

Evaluation LMs with Perplexity (2016)

38

n-gram model →

Source: https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/

Increasingly
complex RNNs

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/

39

Summary

▪ RNNs: Repeated use of finite structure.

▪ A natural fit for language modeling.

▪ Next: let’s summarize the pros and cons.

40

RNN-LMs:
Pros and Cons

41

RNNs: Advantages

o Model size doesn’t increase for longer inputs —

reusing a compact set of model parameters.

o Computation for step t can (in theory) use

information from many steps back

41

the students opened their

boo
ks lapto

ps

a zo
o

42

RNNs: Weaknesses

▪ Recurrent computation is slow and difficult to parallelize.
o Next week: self-attention mechanism, better at

representing long sequences and also parallelizable.

▪ While RNNs in theory can represent long sequences, they
quickly forget portions of the input.

▪ Vanishing/exploding gradients.

42

the studentsopene
d

thei
r

bo
oks lapt

ops

a z
o
o

43

Vanishing/Exploding Gradient Problem: Intuition

▪ Backpropagated errors multiply at each layer, resulting in

Figure from Graham Neubig

44

▪ Backpropagated errors multiply at each layer, resulting in
exponential decay (if derivative is small)
or growth (if derivative is large).

▪ Makes it very difficult train deep
networks, or simple recurrent
networks over many time steps.

backpropagated
feedback

the sat oncat

books
laptops

ℒ

∇ℒ 𝐖ℎ = 𝐉ℒ 𝐖𝐿−1
T
=෍

𝑡=0

𝐉ℒ 𝒉(𝑡) 𝐉𝒉(𝑡) 𝐖ℎ

T

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

chain rule

Vanishing/Exploding Gradient Problem

45

Vanishing/Exploding Gradient Problem

▪ Note: instability of matrix powers can be determined from their eigenvalues.

backpropagated
feedback

the sat oncat

books
laptops

ℒ

chain rule

𝐉ℒ 𝒉(0) = 𝐉𝒉(1) 𝒉
(0) 𝐉𝒉(2) 𝒉

(1) × … × 𝐉𝒉(4) 𝒉(3) 𝐉ℒ 𝒉(4)

Gradient signal from far away is lost.
So, model weights are updated only

with respect to near effects, not long-
term effects.

46

Coping with Exploding Gradients

▪ Gradient clipping:
o If the norm of the gradient is greater than some threshold, scale it down

before applying SGD update.

▪ Intuition: take a step in the same direction, but a smaller step

46
[“On the difficulty of training recurrent neural networks”, Pascanu et al, 2013]

http://proceedings.mlr.press/v28/pascanu13.pdf

47

Coping with Vanishing Gradients

▪ Using residual connections:
o lots of new deep architectures (RNN or otherwise) add direct

connections, thus allowing the gradient to flow)

47

48

RNNs: Difficulty in Learning Long-Range
Dependencies (3)

▪ While RNNs in theory can represent long sequences, in practice
teaching them about long-range dependencies is non-trivial.

▪ Changes to the architecture makes it easier for the RNN to preserve
information over many timesteps
o Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997, Gers+ 2000]

o Gated Recurrent Units (GRU) [Cho+ 2014]

48

49

RNNs: Difficulty in Learning Long-Range
Dependencies (3)

▪ While RNNs in theory can represent long sequences, in practice
teaching them about long-range dependencies is non-trivial.

▪ Changes to the architecture makes it easier for the RNN to preserve
information over many timesteps
o Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997, Gers+ 2000]

o Gated Recurrent Units (GRU) [Cho+ 2014]

▪ Many of these variants were the dominant architecture of In 2013–2015.

▪ We will not cover these alternative architecture in favor or spending more
time on more modern developments.

49

50

Summary

▪ RNNs provide a compact model, regardless of sequence size. In theory, this is great!

▪ In practice, however:

o They still struggle with remembering long-range dependencies.

o Training them is not difficult because of vanishing/exploding gradients.

▪ Despite these limits, RNNs provided improvements at the time that they were
introduced and laid the foundation for the future progress.

51

Bonus:
Pre-training RNN

Language Models

52

Recap: Recurrent Neural Networks

▪ Repeated use of a finite model

5
2

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥1 𝑥2 𝑥3 𝑥4

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking

53

Recap: Encoder-Decoder Architectures

▪ It is useful to think of generative models as two sub-models.

“The cat sat on the [MASK]”
Some
model

54

Recap: Encoder-Decoder Architectures

55

Contextual Meaning of Words

▪ Earlier word embedding methods (e.g., Word2Vec, GloVe) learn a single “static”
vector for each word.

o Static embeddings are not flexible and expressive enough.

[Deep contextualized word representations, Peters et al. 2018]

• The children love to play outside in the park.

• She went to see a play at the local theater.
• They play the piano beautifully.

Information from context is
necessary to capture the correct

meaning of the word.

https://arxiv.org/abs/1802.05365

56

ELMo: First Major Self-Supervised LM

▪ Goal: get highly rich, contextualized embeddings (word tokens) that depend on
the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

• The children love to play outside in the park.

• She went to see a play at the local theater.
• They play the piano beautifully.

[2.05, -1.57, 1.07, 1.37, 0.32] [0.45, -0.26, 0.49, 2.37, -1.2] [-0.37, 0.17, -0.36, 0.12, 0.18]

https://arxiv.org/abs/1802.05365

57

ELMo: First Major Self-Supervised LM

▪ Goal: get highly rich, contextualized embeddings (word tokens) that depend on
the entire sentence in which a word is used.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

58

Extending RNNs to Both Directions

▪ An RNN limitation: Hidden variables capture only one side of the context.

▪ Solution: Bi-Directional RNNs

58

RNN Bi-directional RNN

59

ELMo: First Major Self-Supervised LM

▪ Use both directions of context (bi-directional), with increasing abstractions (stacked)

o Two LSTMs in different directions — capture both directions

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

60

ELMo: First Major Self-Supervised LM

▪ Linearly combine all abstract representations (hidden layers) and optimize w.r.t. a
particular task (e.g., sentiment classification)

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

61

ELMo: Some Details

▪ Train a forward language model by modeling prob
of each word, given its left context.

▪ Similarly, train a backward language model, conditioned on the right context.

▪ Some training details:

o Use 4096 dim hidden states

o Residual connections from
the first to second layer

o Trained 10 epochs on 1B Word Benchmark

o Results in perplexity of ~39

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

62

Adapting ELMo Representations for Tasks

▪ Fine-tune classifiers using
contextualized word representations
extracted from ELMo.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

63

ELMo: Evaluation

▪ SQuAD: question answering

▪ SNLI: textual entailment

▪ SRL: semantic role labeling

▪ Coref: coreference resolution

▪ NER: named entity recognition

▪ SST-5: sentiment analysis

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

64

Experimental Results

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

[Deep contextualized word representations, Peters et al. 2018]

Syntactic information is better represented at lower layers
while semantic information is captured a higher layers

POS tagging Word-Sense Disambiguation

https://arxiv.org/abs/1802.05365

66

▪ Let’s say I want to train a model for sentiment analysis

▪ In the past, I would simply train a supervised model on Word2Vec representation of
review sentences (e.g., HW2).

A ton of unlabeled
text

A self-
supervised

model step 1:
self-supervised

pretraining

A self-
supervised

model

A ton of unlabeled
text

A broader lesson:
Pre-training + Fine-tuning

step 2:
supervised
fine-tuning

67

A broader lesson:
Pre-training + Fine-tuning

Contextual representation of LMs is much stronger than word-level ones.

Now that we have Fixed-Window LM, we can use it to build better classifiers!

A ton of unlabeled
text

A self-
supervised

model step 1:
self-supervised

pretraining

A self-
supervised

model

A ton of unlabeled
text

step 2:
supervised
fine-tuning

68

Summary

▪ ELMo: Stacked Bi-directional LSTMs

▪ ELMo yielded incredibly good contextualized embeddings, which
yielded SOTA results when applied to many NLP tasks.

▪ Main ELMo takeaway: given enough [unlabeled] training data,
having tons of parameters model is useful — the system can
determine how to best use context.

[Deep contextualized word representations, Peters et al. 2018]

https://arxiv.org/abs/1802.05365

69

Summary

▪ Recurrent Neural Networks
o A family of neural networks

that allow architecture for
inputs of variable length

▪ RNN-LM: LM based on RNNs

▪ A notable example: ELMo

▪ Cons:
o Sequential processing

o While in theory it maintain infinite history, in practice it suffers from long-range
dependencies.

	Slide 1: Recurrent Neural Language Models
	Slide 2: Recap
	Slide 3: What Changed from N-Gram LMs to Neural LMs?
	Slide 4: Moving Beyond Feedforward Neural LMs
	Slide 5: Chapter Goals
	Slide 6
	Slide 7: Infinite Use of Finite Model
	Slide 8: Recurrent Neural Networks (RNNs)
	Slide 9: Unrolling RNN
	Slide 10: LMs w/ Recurrent Neural Nets
	Slide 11: Example Inference (Generation) with RNN
	Slide 12: Example Inference (Generation) with RNN
	Slide 13: Example Inference (Generation) with RNN
	Slide 14: Example Inference (Generation) with RNN
	Slide 15: Example Inference (Generation) with RNN
	Slide 16: Example Inference (Generation) with RNN
	Slide 17: Example Inference (Generation) with RNN
	Slide 18: Example Inference (Generation) with RNN
	Slide 19: Example Inference (Generation) with RNN
	Slide 20: Example Inference (Generation) with RNN
	Slide 21
	Slide 22: RNN: Forward Propagation
	Slide 23: RNN: Forward Propagation
	Slide 24: RNN: Forward Propagation
	Slide 25: RNN: Forward Propagation
	Slide 26: RNN: Forward Propagation
	Slide 27: RNN: Forward Propagation
	Slide 28: RNN: Forward Propagation
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Training RNNs: Summary
	Slide 34
	Slide 35: RNN: Generation
	Slide 36: RNNs: Generation
	Slide 37: RNNs in Practice
	Slide 38: Evaluation LMs with Perplexity (2016)
	Slide 39: Summary
	Slide 40
	Slide 41: RNNs: Advantages
	Slide 42: RNNs: Weaknesses
	Slide 43: Vanishing/Exploding Gradient Problem: Intuition
	Slide 44: Vanishing/Exploding Gradient Problem
	Slide 45: Vanishing/Exploding Gradient Problem
	Slide 46: Coping with Exploding Gradients
	Slide 47: Coping with Vanishing Gradients
	Slide 48: RNNs: Difficulty in Learning Long-Range Dependencies (3)
	Slide 49: RNNs: Difficulty in Learning Long-Range Dependencies (3)
	Slide 50: Summary
	Slide 51
	Slide 52: Recap: Recurrent Neural Networks
	Slide 53: Recap: Encoder-Decoder Architectures
	Slide 54: Recap: Encoder-Decoder Architectures
	Slide 55: Contextual Meaning of Words
	Slide 56: ELMo: First Major Self-Supervised LM
	Slide 57: ELMo: First Major Self-Supervised LM
	Slide 58: Extending RNNs to Both Directions
	Slide 59: ELMo: First Major Self-Supervised LM
	Slide 60: ELMo: First Major Self-Supervised LM
	Slide 61: ELMo: Some Details
	Slide 62: Adapting ELMo Representations for Tasks
	Slide 63: ELMo: Evaluation
	Slide 64: Experimental Results
	Slide 65
	Slide 66: A broader lesson: Pre-training + Fine-tuning
	Slide 67: A broader lesson: Pre-training + Fine-tuning
	Slide 68: Summary
	Slide 69: Summary

