
Transformer Architecture

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

RNNs, Back to the Cons

▪ While RNNs in theory can represent long sequences, they
quickly forget portions of the input.

▪ Vanishing/exploding gradients

▪ Difficult to parallelize

▪ The alternative solution we will see: Transformers!

3

Language Models: History Recap

▪ Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]

o Applications: Speech Recognition, Machine Translation

▪ Statistical or shallow neural LMs (late 90’s – mid 00’s) [Bengio+ 2001, …]

▪ Recurrent neural nets (2010s)

▪ Pre-training deep neural language models (2017’s onward):

o Many models based on: Self-Attention

4

Chapter Plan

1. Self-Attention module

2. Transformer architecture

3. Computation/space cost

4. Thinking about Transformer implementation

Chapter goal — getting very comfortable with nuances involved in Transformers.

5

Self-Attention
Module

6

Self-Attention

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

Self-Attention Layer

• 𝑏𝑖 is obtained based on the
whole input sequence.

• can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

RNN

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

7

RNN vs Transformer

8

Attention

▪ Core idea: build a mechanism to focus (“attend”) on a
particular part of the context.

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

9

Defining Self-Attention

▪ Terminology:

o Query: to match others

o Key: to be matched

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

10

Defining Self-Attention

▪ Terminology:

o Query: to match others

o Key: to be matched

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

An analogy ….

https://arxiv.org/abs/1706.03762

11

Defining Self-Attention

▪ Terminology:

o Query: to match others

o Key: to be matched

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

12

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

The

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖

O O O O O

13

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖

14

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

𝛼1,𝑖 = ൘𝑞1 ∙ 𝑘𝑖

√𝑑

Scaled dot product

15

How much
should “The”
attend to other
positions?

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

How much
should “The”
attend to other
positions?

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗 exp 𝑧𝑗

16

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Representation of “The” given the attention weights

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

17

18

Question

▪ What would be the output vector for
the word “Thinking”?

[Slide credit: Danqi Chen]

19

Self-Attention: Matrix Notation

[Slide credit: Danqi Chen]

20

Self-Attention

▪ Can write it in matrix form:

▪ Given input 𝐱:

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

20

21

Self-Attention: Back to Big Picture

▪ Attention is a powerful mechanism to create context-aware representations

▪ A way to focus on select parts of the input

▪ Better at maintaining long-distance dependencies in the context.

21

𝑥4𝑥3𝑥2𝑥1

𝑏1 𝑏2 𝑏3 𝑏4

Self-Attention Layer

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

22

Computational and Space Complexity

▪ The attention function:

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

▪ dim 𝑄𝐾𝑇 = 𝑁2 → 𝑂 𝑁2𝑑𝑘 time complexity to calculate 𝑄𝐾.

▪ Attention matrix dim softmax
𝑄𝐾𝑇

𝑑𝑘
= 𝑁 × 𝑁

o Storing the attention matrix for each head → 𝑂 𝑁2ℎ .

▪ If 𝑁 ≫ 𝑑𝑘 , ℎ, the time and space complexity is 𝑂 𝑁2 .

o Scalability, resource consumption, adoption, etc.

[Slide credit: CS886 at UWaterloo]

23

Computational and Space Complexity (2)

▪ n = sequence length, d = hidden dimension

▪ Quadratic complexity, but:

o O(1) sequential operations (not linear like in RNN)

▪ Can be efficiently parallelized

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

24

Multi-Headed Self-Attention

▪ Multiple parallel attention layers.

o Each attention layer has its own parameters.

o Concatenate the results and run them through a linear projection.

▪ Main idea: Allows model to jointly attend
to information from different representation
subspaces (like ensembling)

Self-Attention Layer
Self-Attention Layer

𝑥4𝑥3𝑥2𝑥1

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

25

Multi-Headed Self-Attention

▪ Just concatenate all the heads and apply an output projection matrix.

head𝑖 = Attention 𝐖𝑖
𝑞
𝐱,𝐖𝑖

𝑘𝐱,𝐖𝑖
𝑣𝐱

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headℎ 𝑾𝑂

▪ In practice, we use a reduced dimension for each head.

o Denote: 𝑑 = hidden dimension, m = number of heads

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 , 𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
𝑚 , 𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
𝑚 , 𝑾𝑂 ∈ ℝ𝑑×𝑑

▪ The total computational cost is similar to that of single-hear attention
with full dimensionality.

26

Combine with FFN

Multi-Headed
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it to add more expressivity.
• This allows the model to apply another transformation to the contextual

representations (or “post-process” them).

• Usually, the dimensionality of
the hidden feedforward layer
is 2-8 times larger than
the input dimension.

Feedforward Net: Refresher

A fully-connected network
of nodes and weights.

FFN 𝐱 = 𝑓 𝑐𝑊1 + 𝑏1 𝑊2 + 𝑏2

27

How Do We Prevent Vanishing Gradients?

▪ Residual connections let the model “skip” layers
o These connections are particularly useful for

training deep networks

▪ Use layer normalization to stabilize the network
and allow for proper gradient flow

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

28

Putting it Together: Self-Attention Block

Given input 𝐱:

out = 𝐿𝑁(𝒄 + 𝒄′)
𝒄 = FFN 𝒄′ = 𝑓 𝒄′𝑊1 + 𝑏1 𝑊2 + 𝑏2

𝒄′ = 𝐿𝑁(𝒄 + 𝒙)
𝒄 = MultiHeadedAttention(𝒙;𝐖𝑞,𝐖𝑘,𝐖𝑣)

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

29

Summary: Self-Attention Block

▪ Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some similarity
notion.

▪ Next: We will combine self-attention blocks to build various architectures known as
Transformer.

30

Transformer

31

How Do We Make it Deep?

▪ Stack more layers!

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

32

From Representations to Prediction

▪ To perform prediction, add a classification head
on top of the final layer of the transformer.

▪ This can be per token (Language modeling)

▪ Or can be for the entire sequence (only one token)

books

33

One last wrinkle though …

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

One issue: the model doesn’t know
word positions/ordering.

O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1
O O O O O

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2
O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3
O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4
O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

One issue: the model doesn’t know
word positions/ordering.

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn
relative positioning

𝑝𝑖 are positional
embeddings

We will discuss
various choices for
these embedding!

36

O
O

O
O

O
O

𝑥1
O O O O O

O
O

O
O

O
O

𝑥2
O O O O O

O
O

O
O

O
O

𝑥3
O O O O O

O
O

O
O

O
O

𝑥4
O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn
relative positioning

𝑝𝑖 are positional
embeddings

Absolute Positional Embeddings

▪ Why “add”? Why not, say, “concatenate and then project”?

o “concatenate and then project” would be a more general approach with more
trainable parameters.

o In practice, “sum” works fine that

o The intuition here is that “summing” forms point clouds of word embedding
information around position embeddings unique to each position.

37

▪ The idea is to create vectors that uniquely encoder each position.

▪ For example, consider vectors of binary values.

o Example below shows 4-dimensional position encodings for 16 positions.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Absolute Positional Embeddings

The issue with binary
encoding is that the

positional information is
localized around a few bits.

38

Math Recap: Sine and Cosine Functions

39

Absolute Positional Embeddings

▪ Let t be a desired position. Then the i-th element of the positional vector is:

▪ Here d is the maximum dimension.

▪ This provides unique vectors for each position.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

40

Quiz

▪ Let t be a desired position:

▪ Q: Are the frequencies increasing with dimension i ?

▪ Answer: The frequencies are decreasing along the vector dimension.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

41

Visualizing Absolute Positional Embeddings

▪ Here positions range from 0-50, for an embedding dimension of 130.

O
O

O
O

O
O

𝑥1
O O O O O

O
O

O
O

O
O

𝑥2
O O O O O

O
O

O
O

O
O

𝑥3
O O O O O

O
O

O
O

O
O

𝑥4
O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn
relative positioning

𝑝𝑖 are positional
embeddings

An approach:

Sine/Cosine encoding

43
Image by http://jalammar.github.io/illustrated-gpt2/

TRANSFORMER

Transformer-based Language Modeling

And continue like
that until we reach
EOS or we get tired.

http://jalammar.github.io/illustrated-gpt2/

44

Training a Transformer Language Model

▪ Goal: Train a Transformer for language modeling (i.e., predicting the next word).

▪ Approach: Train it so that each position is predictor of the next (right) token.

o We just shift the input to right by one, and use as labels

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

EOS special token

[Slide credit: Arman Cohan]

45

Training a Transformer Language Model

▪ For each position, compute their corresponding distribution over the whole vocab.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

46

Training a Transformer Language Model

▪ For each position, compute the loss between the distribution and the gold output label.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

47

Training a Transformer Language Model

▪ Sum the position-wise loss values to a obtain a global loss.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

48

Training a Transformer Language Model

▪ Using this loss, do Backprop and update the Transformer parameters.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

Well, this is not quite right
…

what is the problem with this?

49

Training a Transformer Language Model

▪ The model would solve the task by copying the next token to output (data leakage).

o Does not learn anything useful

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

50

Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

51

Attention mask

Slide credit: Arman Cohan

What we haveWhat we want

52

Attention mask

Slide credit: Arman Cohan

Attention mask

large negative numbers,
which leads to softmax(−∞) ≈ 0

53

x

Attention mask

Slide credit: Arman Cohan

Attention mask

Note matrix multiplication is quite fast in GPUs.

54

x =

Attention mask

Slide credit: Arman Cohan

55

x

softmax

Attention mask
The effect is more than just pruning out some of the

wirings in self-attention block.

Slide credit: Arman Cohan

56

Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
+ masking

57

▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat

58

▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat

on

The probabilities get
revised upon adding a

new token to the input.

59

▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on

the

The probabilities get
revised upon adding a

new token to the input.

60

▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the

mat

The probabilities get
revised upon adding a

new token to the input.

61

▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the mat

</s>

The probabilities get
revised upon adding a

new token to the input.

62

Summary

▪ This is a very generic Transformer!

▪ We will implement this in HW5 to build a simple Transformer Language
Model!!

▪ Next:

o Architectural variants

63

Transformer
Architectural Variants

64

Encoder-Decoder Architectures

▪ It is useful to think of generative models as two sub-models.

64

“The cat sat on the [MASK]”
Some
model

65

Encoder-Decoder Architectures

▪ It is useful to think of generative models as two sub-models.

65

“The cat sat on the [MASK]”

En
co

de
r

D
ec

od
er

Representation (compression) of the context

Produces the output sequence item by item
using the representation of the context.

Processes the context and
compiles it into a vector.

66

Encoder-decoder models

▪ Transformer is two blocks

▪ Encoder = read or encode the input,

o Architecture is as we’ve seen

▪ Decoder = generate or decode the output

o Architecture is identical to the encoder
but we give it the ability to

also attend to the input

Encoder

<s>The cat is cute

Decoder

Le chat

chat est

mignonest

Le

67

Add & Norm

Add & Norm

Add & Norm

Multi-Head
Self-

Attention

Add & Norm

Feed
Forward

Masked
Multi-Head

Self-
Attention

Add & Norm

Feed
Forward

Input
Embedding

Output
Embedding

Linear

Softmax

Multi-Head
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output

Probabilities

(for 𝑦𝑡)

Encoder
Stack

Decoder
Stack

Generator
(prediction head)

Positional

Encoding

Positional

Encoding

Decoding
Procedure

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]

68

Positional

Encoding

Positional

Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding×

N

Decoding
Procedure

Add & Norm

Add & Norm

Add & Norm

Multi-Head
Self-

Attention

Add & Norm

Feed
Forward

Masked
Multi-Head

Self-
Attention

Add & Norm

Feed
Forward

Input
Embedding

Output
Embedding

Linear

Softmax

Multi-Head
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output

Probabilities

(for 𝑦𝑡)

Generator
(prediction head)

Decoder
Stack

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]

69

Decoder

Add & Norm

Add & Norm

Add & Norm

Multi-Head
Self-

Attention

Add & Norm

Feed
Forward

Masked
Multi-Head

Self-
Attention

Add & Norm

Feed
Forward

Input
Embedding

Output
Embedding

Linear

Softmax

Multi-Head
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output

Probabilities

(for 𝑦𝑡)

Generator
(prediction head)

Positional

Encoding

Positional

Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding×

N

×
N

Decoding
Procedure

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]

70

Positional

Encoding

Positional

Encoding

×
N

×
N

Decoding
Procedure

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding

Add & Norm

Add & Norm

Add & Norm

Multi-Head
Self-

Attention

Add & Norm

Feed
Forward

Masked
Multi-Head

Self-
Attention

Add & Norm

Feed
Forward

Input
Embedding

Output
Embedding

Linear

Softmax

Multi-Head
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output

Probabilities

(for 𝑦𝑡)

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]

71

Transformer [Vaswani et al. 2017]

▪ Computation of encoder attends to both sides.

71
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

72

Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous
computation of encoder

72
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

73

Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

73
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

74

Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

▪ At any step of decoder, re-use previous
computation of encoder.

▪ Computation of decoder is linear,
instead of quadratic.

74
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

75

Recap: Transformer

▪ Yaaay we know Transformers now!

▪ An encoder-decoder architecture

▪ 3 forms of attention

75
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762

76

Quiz: Enc-Dec Cost

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all
and so quadratic.

77

Quiz: Enc-Dec Cost

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all
and so quadratic in 𝑀 and 𝑁.

78

Quiz: Enc-Dec Cost

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all
and so quadratic in 𝑀 and 𝑁.

79

Quiz: Enc-Dec Cost

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, cross attention is missing.

80

Quiz: Enc-Dec Cost

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

Yes. The three terms are respectively the Encoder
self-attention, Decoder self-attention, and Cross
attention.

81

Quiz: Enc-Dec Connections

▪ Which best represents encoder-decoder connections?

encoder

encoder

encoder

encoder

encoder

encoder

decoder

decoder

decoder

decoder

decoder

decoder

encoder

encoder

encoder

encoder

encoder

encoder

decoder

decoder

decoder

decoder

decoder

decoder

Incorrect Correct

𝑡6

𝑡5

𝑡4

𝑡3

𝑡2

𝑡1

𝑡1

[Slide credit: CS886 at UWaterloo]

82

83

Considerations about
computational cost

in Transformers

85

Making decoding more efficient

85

K
V

q

x

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

86

Making decoding more efficient

86

K

q

x

q: the next token

previous context

V

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

87

Making decoding more efficient

87

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

88

Making decoding more efficient

88

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

89

Making decoding more efficient

89

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

90

Making decoding more efficient

90

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

91

Making decoding more efficient

91

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

92

Making decoding more efficient

▪ We are computing the Keys and Values many times!

o Let’s reduce redundancy!

92

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

q

[Slide credit: Arman Cohan]

93

Making decoding more efficient

▪ We are computing the Keys and Values many times!

o Let’s reduce redundancy!

93

K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

The cat sat on the

vnew = Wvx[: , : −1]

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]

94

K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

vnew = Wvx[: , : −1]

▪ Question: How much memory does this K, V cache require?

94

The cat sat on the

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

Making decoding more efficient

[Slide credit: Arman Cohan]

96

Writing our own

Transformer

97

Clone Helper Function

▪ Create N copies of pytorch nn.Module

▪ The Transformer’s structure contains a lot of design repetition (like VGG)

▪ Remember these clones shouldn’t share parameters (for the most part)

[Slide credit: CS886 at UWaterloo]

98

Create Embedding

▪ Create vector representation of sequence vocabulary

▪ nn.Embedding creates a lookup table to map sequence vocabulary to unique vectors

[Slide credit: CS886 at UWaterloo]

99

Positional Encoding

▪ Add information about an
element’s position in a sequence
to its representation

▪ Element wise addition of
sinusoidal encoding

Positional

Encoding

[Slide credit: CS886 at UWaterloo]

100

Attention block

[Slide credit: CS886 at UWaterloo]

−1𝑒9 is a large negative number,
which leads to softmax(-1e9) ≈ 0

101

Multi-Head Attention

[Slide credit: CS886 at UWaterloo]

102

FeedForward Layer

[Slide credit: CS886 at UWaterloo]

103

Sublayer Connections

[Slide credit: CS886 at UWaterloo]

104

Encoder Layer

[Slide credit: CS886 at UWaterloo]

105

Decoder Layer

▪ Same as encoder layers other than:

o the additional multi-head attention block to preform
cross-attention with the output representation from the encoder

[Slide credit: CS886 at UWaterloo]

106

The Prediction Head

▪ A final linear mapping

▪ Apply softmax to convert logits to probabilities

[Slide credit: CS886 at UWaterloo]

107

Build each block

[Slide credit: CS886 at UWaterloo]

108

Putting it Together

[Slide credit: CS886 at UWaterloo]

109

Initialize the model

[Slide credit: CS886 at UWaterloo]

	Slide 1: Transformer Architecture
	Slide 2: RNNs, Back to the Cons
	Slide 3: Language Models: History Recap
	Slide 4: Chapter Plan
	Slide 5
	Slide 6: Self-Attention
	Slide 7: RNN vs Transformer
	Slide 8: Attention
	Slide 9: Defining Self-Attention
	Slide 10: Defining Self-Attention
	Slide 11: Defining Self-Attention
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Question
	Slide 19: Self-Attention: Matrix Notation
	Slide 20: Self-Attention
	Slide 21: Self-Attention: Back to Big Picture
	Slide 22: Computational and Space Complexity
	Slide 23: Computational and Space Complexity (2)
	Slide 24: Multi-Headed Self-Attention
	Slide 25: Multi-Headed Self-Attention
	Slide 26: Combine with FFN
	Slide 27: How Do We Prevent Vanishing Gradients?
	Slide 28: Putting it Together: Self-Attention Block
	Slide 29: Summary: Self-Attention Block
	Slide 30
	Slide 31: How Do We Make it Deep?
	Slide 32: From Representations to Prediction
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Absolute Positional Embeddings
	Slide 37: Absolute Positional Embeddings
	Slide 38: Math Recap: Sine and Cosine Functions
	Slide 39: Absolute Positional Embeddings
	Slide 40: Quiz
	Slide 41: Visualizing Absolute Positional Embeddings
	Slide 42
	Slide 43: Transformer-based Language Modeling
	Slide 44: Training a Transformer Language Model
	Slide 45: Training a Transformer Language Model
	Slide 46: Training a Transformer Language Model
	Slide 47: Training a Transformer Language Model
	Slide 48: Training a Transformer Language Model
	Slide 49: Training a Transformer Language Model
	Slide 50: Training a Transformer Language Model
	Slide 51: Attention mask
	Slide 52: Attention mask
	Slide 53: Attention mask
	Slide 54: Attention mask
	Slide 55: Attention mask
	Slide 56: Training a Transformer Language Model
	Slide 57: How to use the model to generate text?
	Slide 58: How to use the model to generate text?
	Slide 59: How to use the model to generate text?
	Slide 60: How to use the model to generate text?
	Slide 61: How to use the model to generate text?
	Slide 62: Summary
	Slide 63
	Slide 64: Encoder-Decoder Architectures
	Slide 65: Encoder-Decoder Architectures
	Slide 66: Encoder-decoder models
	Slide 67: Transformer [Vaswani et al. 2017]
	Slide 68: Transformer [Vaswani et al. 2017]
	Slide 69: Transformer [Vaswani et al. 2017]
	Slide 70: Transformer [Vaswani et al. 2017]
	Slide 71: Transformer [Vaswani et al. 2017]
	Slide 72: Transformer [Vaswani et al. 2017]
	Slide 73: Transformer [Vaswani et al. 2017]
	Slide 74: Transformer [Vaswani et al. 2017]
	Slide 75: Recap: Transformer
	Slide 76: Quiz: Enc-Dec Cost
	Slide 77: Quiz: Enc-Dec Cost
	Slide 78: Quiz: Enc-Dec Cost
	Slide 79: Quiz: Enc-Dec Cost
	Slide 80: Quiz: Enc-Dec Cost
	Slide 81: Quiz: Enc-Dec Connections
	Slide 82
	Slide 83
	Slide 85: Making decoding more efficient
	Slide 86: Making decoding more efficient
	Slide 87: Making decoding more efficient
	Slide 88: Making decoding more efficient
	Slide 89: Making decoding more efficient
	Slide 90: Making decoding more efficient
	Slide 91: Making decoding more efficient
	Slide 92: Making decoding more efficient
	Slide 93: Making decoding more efficient
	Slide 94: Making decoding more efficient
	Slide 96
	Slide 97: Clone Helper Function
	Slide 98: Create Embedding
	Slide 99: Positional Encoding
	Slide 100: Attention block
	Slide 101: Multi-Head Attention
	Slide 102: FeedForward Layer
	Slide 103: Sublayer Connections
	Slide 104: Encoder Layer
	Slide 105: Decoder Layer
	Slide 106: The Prediction Head
	Slide 107: Build each block
	Slide 108: Putting it Together
	Slide 109: Initialize the model

