
Transformer Architecture

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/
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RNNs, Back to the Cons

▪ While RNNs in theory can represent long sequences, they 
quickly forget portions of the input.

▪ Vanishing/exploding gradients 

▪ Difficult to parallelize 

▪ The alternative solution we will see: Transformers! 
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Language Models: History Recap

▪ Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]

o Applications: Speech Recognition, Machine Translation

▪ Statistical or shallow neural LMs (late 90’s – mid 00’s) [Bengio+ 2001, …]

▪ Recurrent neural nets (2010s)

▪ Pre-training deep neural language models (2017’s onward):

o Many models based on: Self-Attention
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Chapter Plan 

1. Self-Attention module 

2. Transformer architecture  

3. Computation/space cost 

4. Thinking about Transformer implementation 

Chapter goal — getting very comfortable with nuances involved in Transformers. 
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Self-Attention 
Module
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Self-Attention 

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

Self-Attention Layer

• 𝑏𝑖 is obtained based on the 
whole input sequence. 

• can be parallelly computed. 

Idea: replace any thing done by RNN with self-attention. 

RNN

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014; 
“Attention is All You Need” Vaswani et al. 2017
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RNN vs Transformer
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Attention 

▪ Core idea: build a mechanism to focus (“attend”) on a
particular part of the context. 

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

An analogy …. 

https://arxiv.org/abs/1706.03762
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Defining Self-Attention

▪ Terminology: 

o Query: to match others

o Key: to be matched  

o Value: information to be extracted

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762
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𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖



O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

The

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖

O O O O O

13



O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑖 = 𝑊𝑞𝑥𝑖

𝑘𝑖 = 𝑊𝑘𝑥𝑖

𝑣𝑖 = 𝑊𝑣𝑥𝑖
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𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

𝛼1,𝑖 = ൘𝑞1 ∙ 𝑘𝑖

√𝑑

Scaled dot product

15

How much 
should “The” 
attend to other 
positions? 



O
O

𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

How much 
should “The” 
attend to other 
positions? 

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗 exp 𝑧𝑗

16
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𝑣1
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O

𝑘1
O
O

𝑞1

𝑥1
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The cat sat           on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Representation of “The” given the  attention weights 

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

17
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Question

▪ What would be the output vector for 
the word “Thinking”?

[Slide credit: Danqi Chen]
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Self-Attention: Matrix Notation

[Slide credit: Danqi Chen]
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Self-Attention

▪ Can write it in matrix form: 

▪ Given input 𝐱:

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

20
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Self-Attention: Back to Big Picture  

▪ Attention is a powerful mechanism to create context-aware representations

▪ A way to focus on select parts of the input

▪ Better at maintaining long-distance dependencies in the context. 

21

𝑥4𝑥3𝑥2𝑥1

𝑏1 𝑏2 𝑏3 𝑏4

Self-Attention Layer

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Computational and Space Complexity

▪ The attention function:

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

▪ dim 𝑄𝐾𝑇 = 𝑁2 → 𝑂 𝑁2𝑑𝑘 time complexity to calculate 𝑄𝐾.

▪ Attention matrix dim softmax
𝑄𝐾𝑇

𝑑𝑘
= 𝑁 × 𝑁

o Storing the attention matrix for each head → 𝑂 𝑁2ℎ .

▪ If 𝑁 ≫ 𝑑𝑘 , ℎ, the time and space complexity is 𝑂 𝑁2 .

o Scalability, resource consumption, adoption, etc.

[Slide credit: CS886 at UWaterloo]
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Computational and Space Complexity (2)

▪ n = sequence length, d = hidden dimension

▪ Quadratic complexity, but: 

o O(1) sequential operations (not linear like in RNN)

▪ Can be efficiently parallelized

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Multi-Headed Self-Attention

▪ Multiple parallel attention layers. 

o Each attention layer has its own parameters. 

o Concatenate the results and run them through a linear projection. 

▪ Main idea: Allows model to jointly attend 
to information from different representation 
subspaces (like ensembling) 

Self-Attention Layer
Self-Attention Layer

𝑥4𝑥3𝑥2𝑥1

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Multi-Headed Self-Attention

▪ Just concatenate all the heads and apply an output projection matrix.

head𝑖 = Attention 𝐖𝑖
𝑞
𝐱,𝐖𝑖

𝑘𝐱,𝐖𝑖
𝑣𝐱

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headℎ 𝑾𝑂

▪ In practice, we use a reduced dimension for each head. 

o Denote: 𝑑 = hidden dimension, m = number of heads

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 , 𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
𝑚 , 𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
𝑚 , 𝑾𝑂 ∈ ℝ𝑑×𝑑

▪ The total computational cost is similar to that of single-hear attention 
with full dimensionality. 
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Combine with FFN 

Multi-Headed 
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it to add more expressivity. 
• This allows the model to apply another transformation to the contextual 

representations (or “post-process” them).

• Usually, the dimensionality of 
the hidden feedforward layer 
is 2-8 times larger than 
the input dimension.

Feedforward Net: Refresher

A fully-connected network 
of nodes and weights. 

FFN 𝐱 = 𝑓 𝑐𝑊1 + 𝑏1 𝑊2 + 𝑏2
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How Do We Prevent Vanishing Gradients?

▪ Residual connections let the model “skip” layers 
o These connections are particularly useful for 

training deep networks 

▪ Use layer normalization to stabilize the network 
and allow for proper gradient flow

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Putting it Together: Self-Attention Block

Given input 𝐱:

out = 𝐿𝑁(𝒄 + 𝒄′)
𝒄 = FFN 𝒄′ = 𝑓 𝒄′𝑊1 + 𝑏1 𝑊2 + 𝑏2

𝒄′ = 𝐿𝑁(𝒄 + 𝒙)
𝒄 = MultiHeadedAttention(𝒙;𝐖𝑞,𝐖𝑘,𝐖𝑣 )

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Summary: Self-Attention Block  

▪ Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some similarity 
notion. 

▪ Next: We will combine self-attention blocks to build various architectures known as 
Transformer.
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Transformer 
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How Do We Make it Deep? 

▪ Stack more layers! 

[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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From Representations to Prediction

▪ To perform prediction, add a classification head 
on top of the final layer of the transformer.

▪ This can be per token (Language modeling)

▪ Or can be for the entire sequence (only one token)

books
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One last wrinkle though … 
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𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1

O O O O O

The cat sat           on

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

One issue: the model doesn’t know 
word positions/ordering.  
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𝑣1
O
O

𝑘1
O
O

𝑞1

𝑥1
O O O O O

O
O

𝑣2
O
O

𝑘2
O
O

𝑞2

𝑥2
O O O O O

O
O

𝑣3
O
O

𝑘3
O
O

𝑞3

𝑥3
O O O O O

O
O

𝑣4
O
O

𝑘4
O
O

𝑞4

𝑥4
O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

One issue: the model doesn’t know 
word positions/ordering.  

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 =

𝑖

ො𝛼1,𝑖𝑣
𝑖

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

We will discuss 
various choices for 
these embedding!
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O
O

O
O

O
O

𝑥1
O O O O O

O
O

O
O
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𝑥2
O O O O O

O
O

O
O

O
O

𝑥3
O O O O O

O
O

O
O

O
O

𝑥4
O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

Absolute Positional Embeddings 

▪ Why “add”? Why not, say, “concatenate and then project”? 

o “concatenate and then project” would be a more general approach with more 
trainable parameters. 

o In practice, “sum” works fine that 

o The intuition here is that “summing” forms point clouds of word embedding 
information around position embeddings unique to each position.
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▪ The idea is to create vectors that uniquely encoder each position. 

▪ For example, consider vectors of binary values. 

o Example below shows 4-dimensional position encodings for 16 positions. 

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Absolute Positional Embeddings 

The issue with binary 
encoding is that the 

positional information is 
localized around a few bits.
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Math Recap: Sine and Cosine Functions
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Absolute Positional Embeddings 

▪ Let t be a desired position. Then the i-th element of the positional vector is: 

▪ Here d is the maximum dimension. 

▪ This provides unique vectors for each position. 

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Quiz

▪ Let t be a desired position:

▪ Q: Are the frequencies increasing with dimension i ? 

▪ Answer: The frequencies are decreasing along the vector dimension. 

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Visualizing Absolute Positional Embeddings 

▪ Here positions range from 0-50, for an embedding dimension of 130.
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Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

An approach: 

Sine/Cosine encoding 
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Image by http://jalammar.github.io/illustrated-gpt2/

TRANSFORMER

Transformer-based Language Modeling

And continue like 
that until we reach 
EOS or we get tired. 

http://jalammar.github.io/illustrated-gpt2/
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Training a Transformer Language Model

▪ Goal: Train a Transformer for language modeling (i.e., predicting the next word). 

▪ Approach: Train it so that each position is predictor of the next (right) token. 

o We just shift the input to right by one, and use as labels

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

EOS special token

[Slide credit: Arman Cohan]
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Training a Transformer Language Model

▪ For each position, compute their corresponding distribution over the whole vocab. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =
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Training a Transformer Language Model

▪ For each position, compute the loss between the distribution and the gold output label. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =
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Training a Transformer Language Model

▪ Sum the position-wise loss values to a obtain a global loss. 

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =
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Training a Transformer Language Model

▪ Using this loss, do Backprop and update the Transformer parameters.

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ

Well, this is not quite right 
… 

what is the problem with this?
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Training a Transformer Language Model

▪ The model would solve the task by copying the next token to output (data leakage). 

o Does not learn anything useful

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
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Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
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Attention mask

Slide credit: Arman Cohan

What we haveWhat we want
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Attention mask

Slide credit: Arman Cohan

Attention mask

large negative numbers, 
which leads to softmax(−∞) ≈ 0
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x

Attention mask

Slide credit: Arman Cohan

Attention mask

Note matrix multiplication is quite fast in GPUs. 
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x =

Attention mask

Slide credit: Arman Cohan
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x

softmax

Attention mask
The effect is more than just pruning out some of the 

wirings in self-attention block.

Slide credit: Arman Cohan
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Training a Transformer Language Model

▪ We need to prevent information leakage from future tokens! How?

cat sat on the mat </s>

TRANSFORMER

the cat sat on the mat𝑋 =

(gold output) 𝑌 =

+ + + + +ℒ =

∇ℒ
+ masking
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat

on

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on

the

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the

mat

The probabilities get 
revised upon adding a 

new token to the input. 
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▪ Use the output of previous step as input to the next step repeatedly

TRANSFORMER

the cat

How to use the model to generate text?

sat on the mat

</s>

The probabilities get 
revised upon adding a 

new token to the input. 
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Summary 

▪ This is a very generic Transformer! 

▪ We will implement this in HW5 to build a simple Transformer Language 
Model!! 

▪ Next: 

o Architectural variants 
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Transformer 
Architectural Variants  
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Encoder-Decoder Architectures 

▪ It is useful to think of generative models as two sub-models.

64

“The cat sat on the [MASK]”
Some 
model
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Encoder-Decoder Architectures 

▪ It is useful to think of generative models as two sub-models.

65

“The cat sat on the [MASK]”

En
co

de
r

D
ec

od
er

Representation (compression) of the context

Produces the output sequence item by item 
using the representation of the context. 

Processes the context and 
compiles it into a vector.
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Encoder-decoder models

▪ Transformer is two blocks 

▪ Encoder = read or encode the input,

o Architecture is as we’ve seen

▪ Decoder = generate or decode the output

o Architecture is identical to the encoder
but we give it the ability to

also attend to the input

Encoder

<s>The cat is cute

Decoder

Le chat

chat est

mignonest

Le
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Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output 

Probabilities 

(for 𝑦𝑡)

Encoder
Stack

Decoder
Stack

Generator
(prediction head)

Positional 

Encoding

Positional 

Encoding

Decoding 
Procedure

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]
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Positional 

Encoding

Positional 

Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding×

N

Decoding 
Procedure

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output 

Probabilities 

(for 𝑦𝑡)

Generator
(prediction head)

Decoder
Stack

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]
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Decoder

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output 

Probabilities 

(for 𝑦𝑡)

Generator
(prediction head)

Positional 

Encoding

Positional 

Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding×

N

×
N

Decoding 
Procedure

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]
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Positional 

Encoding

Positional 

Encoding

×
N

×
N

Decoding 
Procedure

𝑦𝑡

𝑡++

(shift right)

auto-regressive
decoding

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥1 𝑥2 𝑥𝑛••• 𝑦1 𝑦𝑡−1•••

Output 

Probabilities 

(for 𝑦𝑡)

[Slide credit: CS886 at UWaterloo]

Transformer [Vaswani et al. 2017]
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Transformer [Vaswani et al. 2017]

▪ Computation of encoder attends to both sides.  

71
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder

72
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder as well as decoder’s 
own generations 

73
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Transformer [Vaswani et al. 2017]

▪ At any step of decoder, it attends to previous 
computation of encoder as well as decoder’s 
own generations 

▪ At any step of decoder, re-use previous 
computation of encoder.

▪ Computation of decoder is linear, 
instead of quadratic.

74
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Recap: Transformer

▪ Yaaay we know Transformers now! 

▪ An encoder-decoder architecture

▪ 3 forms of attention

75
[Attention Is All You Need, Vaswani et al. 2017]

https://arxiv.org/abs/1706.03762
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Quiz: Enc-Dec Cost 

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic.
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Quiz: Enc-Dec Cost 

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic in 𝑀 and 𝑁.
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Quiz: Enc-Dec Cost 

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, self attention is all-to-all 
and so quadratic in 𝑀 and 𝑁.
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Quiz: Enc-Dec Cost 

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

No, cross attention is missing. 
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Quiz: Enc-Dec Cost 

▪ Source data (large!):

o The references for a Wikipedia article.

o Web search using article section titles, ~ 10 web pages per query.

▪ For a passage of length N and a summary of length M, the complexity of the 
attention is:

o 𝑂 𝑁 + 𝑂(𝑀)

o 𝑂 𝑁 + 𝑂 𝑀 + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2 ) + 𝑂(𝑁𝑀)

o 𝑂 𝑁2 + 𝑂(𝑀2)

[Slide: John Canny]

Yes. The three terms are respectively the Encoder 
self-attention, Decoder self-attention, and Cross 
attention.
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Quiz: Enc-Dec Connections 

▪ Which best represents encoder-decoder connections? 

encoder

encoder

encoder

encoder

encoder 

encoder

decoder

decoder

decoder

decoder

decoder

decoder

encoder

encoder

encoder

encoder

encoder 

encoder

decoder

decoder

decoder

decoder

decoder

decoder

Incorrect Correct

𝑡6

𝑡5

𝑡4

𝑡3

𝑡2

𝑡1

𝑡1

[Slide credit: CS886 at UWaterloo]
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Considerations about 
computational cost 

in Transformers
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Making decoding more efficient

85

K
V

q

x

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

86

K

q

x

q: the next token

previous context

V

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

87

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

88

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

89

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

90

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

91

q

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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Making decoding more efficient

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

92

q: the next token

previous context

K = Wkx

The cat sat on the

V = Wvx

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

q

[Slide credit: Arman Cohan]
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Making decoding more efficient

▪ We are computing the Keys and Values many times! 

o Let’s reduce redundancy! 

93

K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

The cat sat on the

vnew = Wvx[: , : −1]

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

[Slide credit: Arman Cohan]
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K Cached

q

q: the next token

previous context

V Cached

knew = Wkx[: , : −1]

vnew = Wvx[: , : −1]

▪ Question: How much memory does this K, V cache require?

94

The cat sat on the

𝑄 = 𝐖𝑞𝐱
𝐾 = 𝐖𝑘𝐱
𝑉 = 𝐖𝑣𝐱

Attention(𝐱) = softmax
𝑄𝐾T

√𝑑
𝑉

Making decoding more efficient

[Slide credit: Arman Cohan]
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Writing our own 

Transformer
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Clone Helper Function 

▪ Create N copies of pytorch nn.Module

▪ The Transformer’s structure contains a lot of design repetition (like VGG)

▪ Remember these clones shouldn’t share parameters (for the most part)

[Slide credit: CS886 at UWaterloo]
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Create Embedding 

▪ Create vector representation of sequence vocabulary

▪ nn.Embedding creates a lookup table to map sequence vocabulary to unique vectors

[Slide credit: CS886 at UWaterloo]
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Positional Encoding

▪ Add information about an 
element’s position in a sequence 
to its representation

▪ Element wise addition of 
sinusoidal encoding

Positional 

Encoding

[Slide credit: CS886 at UWaterloo]
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Attention block

[Slide credit: CS886 at UWaterloo]

−1𝑒9 is a large negative number, 
which leads to softmax(-1e9) ≈ 0



101

Multi-Head Attention

[Slide credit: CS886 at UWaterloo]
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FeedForward Layer 

[Slide credit: CS886 at UWaterloo]
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Sublayer Connections

[Slide credit: CS886 at UWaterloo]
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Encoder Layer 

[Slide credit: CS886 at UWaterloo]
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Decoder Layer 

▪ Same as encoder layers other than:

o the additional multi-head attention block to preform 
cross-attention with the output representation from the encoder

[Slide credit: CS886 at UWaterloo]
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The Prediction Head 

▪ A final linear mapping

▪ Apply softmax to convert logits to probabilities

[Slide credit: CS886 at UWaterloo]
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Build each block

[Slide credit: CS886 at UWaterloo]
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Putting it Together

[Slide credit: CS886 at UWaterloo]
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Initialize the model

[Slide credit: CS886 at UWaterloo]
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