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RNNs, Back to the Cons

= While RNNs in theory can represent long sequences, they
quickly forget portions of the input.

= Vanishing/exploding gradients
= Difficult to parallelize

= The alternative solution we will see: Transformers!



Language Models: History Recap

Probabilistic n-gram models of text generation [jelinek+ 1980, ..
o Applications: Speech Recognition, Machine Translation

Statistical or shallow neural LMs (late 90s — mid 00's) [gengio+ 2001, ..]

Recurrent neural nets (2010s)

Pre-training deep neural language models (2017’s onward):
o Many models based on: Self-Attention
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Chapter Plan

1. Self-Attention module

2. Transformer architecture

3. Computation/space cost

4. Thinking about Transformer implementation

Chapter goal — getting very comfortable with nuances involved in Transformers.
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Self-Attention

Module




Self-Attention

bl p2

RNN

a

a

v

v
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b! is obtained based on the
whole input sequence.
can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;

“Attention is All You Need” Vaswani et al. 2017
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Attention

» Core idea: build a mechanismto focus (“attend”) on a
particular part of the context.
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https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:
o Query: to match others
o Key: to be matched
o Value: information to be extracted

g JOHNS HOPKINS [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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Defining Self-Attention |Ananalogy ...

= Terminology:

o Query: to match others [1TT]
o Key: to be matched [TT]  vauess
o Value: information to be Query #9 [TT] vawes
[TT]
it
I:l:l:l value #1
Q

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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https://arxiv.org/abs/1706.03762

Defining Self-Attention

= Terminology:

o Query: to match others value #4

o Key: to be matched value #3

o Value: information to be dussit 50% value #2

[T 1]
it
300/0 value #1
o
(o
S
Q

R Jous Horxne [Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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https://arxiv.org/abs/1706.03762

Query #9

w

30%

q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
Vi = vai

value #4

‘ value #3

50% value #2 ‘

Aaqo

Ishwi

} value #1

10qo.

12



91 ki v
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00000
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q: query (to match others)
q; = Wix;

k: key (to be matched)
ki = kai

v: value (information to be extracted)
Vi = vai
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How much
should “The”
attend to other
positions?

1, ki .
ay; = q /\/d q: query (to match others)
k: key (to be matched)

Scaled dot product v: value (information to be extracted)

1,1 a1,2 13 a4
91 k1 V1 q2 k, v, —
o o B o ° 0 Query #9 D:D value #2 -
0 o 0] o) o) o) o .
1 T_ ] [1T1] lue #1 c
00000 00000
X1 X
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exp(z; )
D j exp(zj )

a1 1 Q1,2 2,3 1,4
How much t f f 1
should“The” | Softmax |
attend to other
positions?

The cat sat on 16



1 _ ~
00 p' = Z aq,;V Representation of “The” given the attention weights
i
a1 —% aq,,—% a3 —% &m
1 t t ¢
$oftmax
| l | I
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Question

= What would be the output vector for
the word “Thinking™?

(a) 0.5v; + 0.5vo
(b) 0.54v; + 0.46v-
() 0.88v; +0.12v,

(d) 0.12V1 -|- 0.88V2

Input

Embedding
Queries
Keys
Values

Score

Divide by 8 ( V4,

Softmax

Softmax
X

Sum

W mmmuewm [Slide credit: Dangi Chen]
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Self-Attention: Matrix Notation

X e R4

Q=XW? K=xwK v=xwV

(n = input length)

WQ c Rdl qu-; WK c Rdl xdk, WV c ]Rdl X dy

nx dq dk Xn
~
—4
: QK™ ns
Attention(Q, K, V) = softmax( We—T—"

Vi

|

Q: What is this softmax operation?

:'H. OHMNS HOPR NS

softmax(

H

[Slide credit: Dangi Chen]
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hardmaru
o - @hardmaru

Se If'Atte nti 0 I1 The most important formula in deep learning after 2018

I

| Self-Attention

\ What is self-attention? Self-attention calculates a weighted
= Can write it in matrix form: average of feature representations with the weight propor-

tional to a similanity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X € R"™ is projected using three matrices W € RY*%,
= Given input X: Wg € R and Wy € R 10 extract feature repre-
sentations Q, K, and V, referred to as query, key, and value
respectively with di, = d,. The outputs Q, K, V are com-

_ q puted as
Q - wkx Q=XWq, K=XWgk, V=XWy. 1))
K = va So, self-attention can be written as,

V=WYx (QKT)

S = D(Q,K,V) = softmax [ ¥ | v, @)
_ QKT Vi

Attentlon(x) = softmax V where softmax denotes a row-wise softmax normalization
\/ d function. Thus, each element in S depends on all other ele-

ments in the same row,

9:08 PM - Feb 9, 2021 - Twitter Web App

5563 Retweets 42 Quote Tweets 3,338 Likes
- i;‘,' JOHNS HOPKINS
'\1 L
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Self-Attention: Back to Big Picture

= Attention is a powerful mechanism to create context-aware representations
= A way to focus on select parts of the input

bl b? b3 b*

4 4

Self-Attention Layer
4 4 4 4

x x x3 x4

= Better at maintaining long-distance dependencies in the context.

W s [Attention Is All You Need, Vaswani et al. 2017]
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https://arxiv.org/abs/1706.03762

Computational and Space Complexity

The attention function:

. QK"
Attention(Q, K,V) = softmax \/d_ |74
K

dim(QKT) = N? - 0(N?d,) time complexity to calculate QK.

T
Attention matrix dim | softmax oK) ) = N XN
d
Vg

o Storing the attention matrix for each head — 0(N?h).

If N > d,, h, the time and space complexity is O(N?).
o Scalability, resource consumption, adoption, etc.

o«

[Slide credit: CS886 at UWateroo]
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Computational and Space Complexity (2)

Layer Type Complexity per Layer Sequential
Operations

Self-Attention O(n? - d) O(1)

Recurrent O(n - d?) O(n)

= 7= sequence length, d = hidden dimension

Quadratic complexity, but:
o 0O(1) sequential operations (not linear like in RNN)

Can be efficiently parallelized

| dacoh i [Attention Is All You Need, Vaswani et al. 2017] 23



https://arxiv.org/abs/1706.03762

= Multiple parallel attention layers.

= Main idea: Allows model to jointly attend

-

Multi-Headed Self-Attention

o Each attention layer has its own parameters.
o Concatenate the results and run them through a linear projection.

to informatio_n from different representation
subspaces (like ensembling) Self-Attention Layer

[Attention Is All You Need, Vaswani et al. 2017]



https://arxiv.org/abs/1706.03762

Multi-Headed Self-Attention )

Attention

1A | I— |
Just concatenate all the heads and apply an output projection matrix.
V K Q

head; = Attention(W/'x, Wrx, W/'x)
MultiHead(Q, K, V) = Concat(heady, ..., head,) W

In practice, we use a reduced dimension for each head.

o Denote: d = hidden dimension, m = number gf heads

d><i k d><i ax—
w! e Rm, W e R*m, WY e Rm, WY e R4*4

The total computational cost is similar to that of single-hear attention
with full dimensionality.

QY JOHIS TIOTKIN 23



Combine with FFN

* Add a feed-forward network on top it to add more expressivity.

* This allows the model to apply another transformation to the contextual
representations (or “post-process” them).

* Usually, the dimensionality of _
the hidden feedforward layer 00|00 00| FEN(x) = f(cWy + b)) W, + b,

is 2-8 times larger than
the input dimension.

Feedforward Net: Refresher \

Hidden
layer

Input
layer

Feed Forward Network

Inputs
Outputs

Multi-Headed
Self-Attention Layer

— ’_*_‘ ’_*_‘ ’_L‘ A fully-connected network
El ' 00 | 00 | 00 \ of nodes and weights. /




How Do We Prevent Vanishing Gradients?

= Residual connections let the model “skip” layers

-
o These connections are particularly useful for Add & Norm
training deep networks e

Forward

A

= Use layer normalization to stabilize the network

and allow for proper gradient flow —>_Add & Norm

Multi-Head
Attention

—tr

LA ' [Attention Is All You Need, Vaswani et al. 2017]
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Putting it Together: Self-Attention Block

out
Given input x: @ ™)
Add & Norm
out = LN (€ + ¢") Rl
Cc = FFN(C’) = f(C’W]_ + bl)WZ + bz 2
¢’ =LN(c+ x) Add & Norm
¢ = MultiHeadedAttention(x; W9, WX, W?) Multi-Head
Attention
1t
(e J

X: input sequence

[Attention Is All You Need, Vaswani et al. 2017]
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https://arxiv.org/abs/1706.03762

Summary: Self-Attention Block

= Self-Attention: A critical building block of modern language models.

o The idea is to compose meanings of words weighted according some similarity
notion.

= Next: We will combine self-attention blocks to build various architectures known as
Transformer.

v - 29



Transformer




Output
Probabilities

How Do We Make it Deep? (o)

F 3

[ Linear ]
A

= Stack more layers!

4 I y e ~
~—>| Add & Norm ) ~>| Add & Norm |
Feed Feed
NEURAL Forward Forward
NETWORKS A A
— | —
STACK V/) Nx | —((Add & Norm ) » Nx | —~(Add & Norm )
MORE Y 5 Multi-Head Multi-Head
LAYERS Attention Attention
/ \ — —
—— J ] /
Positional D
Encoding
Input
Embedding
[Attention Is All You Need, Vaswani et al. 2017]
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books

From Representations to Prediction

= To perform prediction, add a classification head
on top of the final layer of the transformer.

= This can be per token (Language modeling)
= Or can be for the entire sequence (only one token)

out € R5*4 (S: Sequence length)
logits = Linear g vy(out) = f(out. Wy,) € RV

probabilies = softmax(logits) € R5*"

output token

Token probabilities (logits)

Embeddings
0.19850038 aardvark

0.7089803 aarhus
Decoder #12, Position #1 0.46333563 aaron

output vector Pick an output

- token based on
HEEN X = - its probability
N (sample)

The

Output
Probabilities

| Softmax l
| Linear l

y 3

v
(->| Add & Norm |

~

Feed
Forward

 S—

Nx | —(Add & Norm )

Multi-Head
Attention
At
So— J
Positional D
Encoding
Input
Embedding

T

Inputs
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One last wrinkle though ...
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00 p! = 5 i
b _Zal"v One issue: the model doesn’t know }

+ : word positions/ordering.
L/
011 —% Q1,2 3?‘.] 13 —% 01— %
t t t t
| $oftmax ]
I I I I
1,1 1,2 /aés 1,4
: \
q1 ki M 4z ky v q3 k3 V3 Qa K4 V4
(0] (0] (0] O
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. 00000 | . 00000 | ' 00000 | . 00000 |
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We will discuss
various choices for
these embedding!

001 b' = ) a1’
+ i

One issue: the model doesn’t know
word positions/ordering.

t t t t
[ $oftmax |

I I | I

1,1 12 1,3 a1,4
d1 1 (%) q3 ks s Kyg Uy

p; are positional
embeddings

CIZ 2

| — 1 | |
Allows model to learn

relative positioning

|




Absolute Positional Embeddings

= Why “add”? Why not, say, “concatenate and then project™?

o “concatenate and then project” would be a more general approach with more
trainable parameters.

o In practice, "sum” works fine that

o The intuition here is that “summing” forms point clouds of word embedding
information around position embeddings unique to each position.

i ]

| I IS S I

Allows model to learn }

. ar itional . i .
[ p; are positiona relative positioning

embeddings

N R xl xZ x3 x4 36



Absolute Positional Embeddings

= The idea is to create vectors that uniquely encoder each position.

= For example, consider vectors of binary values.
o Example below shows 4-dimensional position encodings for 16 positions.

0: 00O 8: 000

1 001 9: 001

The issue with binary E 010 10 : 010
encoding s that the 3 011 11 : 011
positional information is 4 100 12 - 100
localized around a few bits. 5 10 1 13 - 101
6 : 110 14 : 110

7 : 111 15 : 111

=
L

https://kaze mnejad.com/blog/transformer_architecture _positional_encoding/



Math Recap: Sine and Cosine Functions

I
f(x) = sin(2x) f(x) = sin(5)
Y, y |
T~ sin(z) cos(x) el
1 N i
2 AN /’
AN . . / .
0 PN 5 el T o &
. 4 27N 4T T 4™ T 4
S ~ 7’
2 o 7’
71“ \"‘l——"”

f(x) = sin (x)

B 1auns HOPE NS
:H'l HIMNS FHOPELM 38



Absolute Positional Embeddings

= Let ¢ be a desired position. Then the ~th element of the positional vector is:

—(4) - sin(wg.t), ifi =2k 1

. = f@) = (1), o Wk = o%k/d
cos(wg.t), ifi=2k+1 100002/

= Here dis the maximum dimension.

= This provides unique vectors for each position.

':i,__‘!' % iy 39

https://kaze mnejad.com/blog/transformer_architecture _positional_encoding/



Quiz
= Let £ be a desired position:

Sil’l(wk. t), if 2+ = 2k
cos(wg.t), ifi=2k+1

—5(2)

pi = f@) = W

= Q: Are the frequencies increasing with dimension i ?
= Answer: The frequencies are decreasing along the vector dimension.

o«

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

1

100002/
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Visualizing Absolute Positional Embeddings

= Here positions range from 0-50, for an embedding dimension of 130.

41



An approach: I

F0.25

Sine/Cosine encoding

r0.00

(sin(i/100002*1/dY )
cos(i/10000%*1/a)

bi

* d
sin(i/woooz*g/ &y
L cos(i/10000%2/%) )

100 120

Allows model to learn
relative positioning

p; are positional
embeddings

|ooooo\ 00000 ‘00000 |
Pl 60000 | "I 00000 | P*[ 00000 | P4 50000




Transformer-based Language Modeling

Output
|
And continue like
Input T
reciter the rfirstr law | $ |

@ JOHNS HOPKINS _ , - 43
. Image by http://jalammar.github.io/illustrated-gpt2/


http://jalammar.github.io/illustrated-gpt2/

Training a Transformer Language Model

= Goal: Train a Transformer for language modeling (i.e., predicting the next word).
= Approach: Train it so that each position is predictor of the next (right) token.

o We just shift the input to right by one, and use as labels
EOS special token

(goldoutpu) Y = cat sat on the mat </s>

rFr T Tt text e, 111

T T T T T T [Slide credit: Arman Cohan]

&7 | X = the cat sat on the mat .



Training a Transformer Language Model

= For each position, compute their corresponding distribution over the whole vocab.

(@oldoutpu) Y = cat sat on the mat </s>

Jonla.  Joolle.  Josle  Jada el Jalle

I O

TRANSFORMER |

trirt

7 Jorns Horkaxs X= the cat sat on the mat
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Training a Transformer Language Model

= For each position, compute the loss between the distribution and the gold output label.

(@oldoutpu) Y = cat sat on the mat </s>

111111

Jonla.  Joolle.  Josle  Jada el Jalle

I O

TRANSFORMER |

T Pt

&7 JoHNs HOPKINS X = the cat sat on the mat

46



Training a Transformer Language Model

= Sum the position-wise loss values to a obtain a global loss.

(@oldoutpu) Y = cat sat on the mat </s>

t= 1+1+1+7+1+1

Jonla.  Joolle.  Josle  Jada el Jalle

I O

TRANSFORMER |

T Pt

&7 JoHNs HOPKINS X= the cat sat on the mat
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Training a Transformer Language Model

= Using this loss, do Backprop and update the Transformer parameters
(gold output) Y = cat sat

on the mat </s>

co 1eTel e Tl ]

ula. Jeale e Jula Jela Ll Well, this is not quite right (5
T T T T T T what is the prc;E)Iem with this?
TRANSFO RMER

Pt

sat on the mat

1
1
1
1
\
\
\
\
\

VL

\
AY
AY
\\
A|

@ JOHNS HOPKINS
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Training a Transformer Language Model

= The model would solve the task by copying the next token to output (data leakage).
o Does not learn anything useful
(@oldoutpu) Y = cat sat on the mat </s>

R

7 Jorns Horkaxs X= the cat sat on the mat

49



Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(@oldoutpu) Y = cat sat on the mat </s>

to fof+el101

Jonla.  Joolle.  Josle  Jada el Jalle

o PPttt

R TRANSFORMER |

T Pt

&7 JoHNs HOPKINS X = the cat sat on the mat
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Attention mask

]
Attention raw scores

o |-0.08 | 124 | 069 |-098 | 143 | -0.6 0.7 0.16 | 093 | 1.28 -1.1
~ |-009| 00| -07 | 006 | 025 | 0.23 | 0.26 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01
o~ 086 | 1.19 | 1.59 | 0.86 | -0.13 | -0.15 -0.98 | -0.87 1.87 | -0.72
o | 012 [-0.03 | -0.02 | 0.88 | -046 | -0.7 | 0.54 | -0.42 Ml -0.38 | 0.04 | -0.84
< 051 | 017 | 013 H 024 | -002| 168 |-0.36 | 0.64 | 0.36 | 0.27 | 0.66
w | 024 SIS 043 | 0.74 | 0.96 031 154 | 166 | 1.14 | 0.58
o | 026 | -01 | 093 | 072 |-038| 1.65 | 047 |-0.96 | -0.17 | -0.9 0.22
~ | -0.55 | 0.81 | 0.71 1.7 -0.8 -0.32 | 1.78 | -0.7 | -0.04 | 1.54 | 0.81
w | 0.74 |[-0.76 | -0.44 | -0.08 21 -0.13 | 1.25 1.84 0.3 0.57 | 0.74
o |-0.97 [-0.91 | 0.15 | 0.35 | -0.81 | 0.11 1.14 1.06 | 1.87 0.5 -0.3
= | 1.56 09 039 | 146 | 144 |-105| 09 |-0.73 | 0.36 | -0.67 | -0.62 | -0.43
= | 032 | 0.74 | 0.44 | -0.1 119 | 083 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11

1 2 3 4 5 6 7 8 9 10 1 12

G9! JOHNS HOPKINS
)

X, X3 ¥ Y, -
—
F
—

J VAN J U J

3 N % N B

What we want

Slide credit: Arman Cohan

X3 Y1 Y,

What we have

2
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2 X3 Yq Yy - X XY Y2

0000 00

Attention mask 00000 (D)
——— 00000 an

X X X Yy Y2 X X X3 Y7 Y2
Attention raw scores ;
Attention mask
o |-008| 124 | 069 |-0.98 | 1.43 | -06 | 0.7 [ 016 | 0.93 | 1.28 - o b | e e s | I i | i |
~ [-0.09| 00 | -07 | 006 | 025 | 023 | 0.26 | 0.18 | 0.78 | -0.21 [ -1.01 | 1.01 _ i | | e | e || a0 | s || s | s || o
o~ | 086 | 119 | 1.59 | 0.86 | -0.13 | -0.15 JErNkN -0.98 | -0.87 1.87 | -0.72 . . . ) ) ) . .
o~ -inf -inf -inf -inf -inf -inf -inf -inf
0.30
o | 012 |-0.03 | -0.02 | 0.88 | -046 | -0.7 | 0.54 | -0.42 M -0.38 | 0.04 |-0.84 0 0 n " : ) . .
© -inf -inf -inf -inf -inf -inf -inf -inf
0.25
< | 051 | 017 | 0.13 0.24 | -0.02 | 168 | -0.36 | 0.64 | 0.36 | 0.27 | 0.66 . . ) ) ) ; m
-+ -inf -inf -inf -inf -inf -inf -inf
0.20
w | 024 [SEES 043 [ 074 | 096 | P ) 031 154 | 166 | 1.14 | 0.58 . ) ) ) . .
w -inf -inf -inf -inf -inf -inf
-0.15
o | 026 [ 01 | 093 [ 0.72 |-0.38 | 1.65 | 0.47 | -0.96 | -0.17 | -0.9 0.22 . .
© -inf -inf
-0.10
~ |-0.56| 081 | 0.71 1.7 -0.8 -032 | 1.78 | -0.7 | -0.04 | 1.54 | 0.81 -
~ =In
. -0.05
w | 0.74 |-0.76 | -0.44 | -0.08 N -0.13 | 1.25 184 | 03 | 057 | 0.74 -
@ -In
o [-0.97 |-0981| 0.15 | 035 | -0.81 | 0.11 | 1.14 106 | 1.87 | 05 03 )
o =l
= | 156 | 09 (039 | 146 | 144 |-105| 09 |-0.73 [ 0.36 | -0.67 | -0.62 | -0.43
o
= | 032 | 0.74 | 0.44 | -0.1 119 | 0.83 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11 I t- b
: arge negative numbers,

which leads to softmax(—w) = 0

,-T' JOHMS HOPELNS
v

Slide credit: Arman Cohan




Attention mask

]
Attention raw scores

o |-0.08 | 124 | 069 |-098 | 143 | -0.6 0.7 0.16 | 093 | 1.28
~ |-009| 00| -07 | 006 | 025 | 0.23 | 0.26 | 0.18 | 0.78 | -0.21 | -1.01 | 1.01
o~ 086 | 1.19 | 1.59 | 0.86 | -0.13 | -0.15 -0.98 | -0.87 1.87 | -0.72
o | 012 [-0.03 | -0.02 | 0.88 | -046 | -0.7 | 0.54 | -0.42 Ml -0.38 | 0.04 | -0.84
< 051 | 017 | 013 n 024 | -002| 168 |-0.36 | 0.64 | 0.36 | 0.27 | 0.66
w | 024 SIS 043 | 0.74 | 0.96 031 154 | 166 | 1.14 | 0.58

o | 026 | -01 | 093 | 072 |-038| 1.65 | 047 |-0.96 | -0.17 | -0.9 0.22
~ | -0.55 | 0.81 | 0.71 1.7 -0.8 -0.32 | 1.78 | -0.7 | -0.04 | 1.54 | 0.81
w | 0.74 |[-0.76 | -0.44 | -0.08 21 -0.13 | 1.25 1.84 0.3 0.57 | 0.74
o |-0.97 [-0.91 | 0.15 | 0.35 | -0.81 | 0.11 1.14 1.06 | 1.87 0.5 -0.3
= | 1.56 09 039 | 146 | 144 |-105| 09 |-0.73 | 0.36 | -0.67 | -0.62 | -0.43
= | 032 | 0.74 | 0.44 | -0.1 119 | 083 | 0.29 | 2.06 | 0.51 | -0.26 | 1.51 | 0.11

1 2 3 4 5 6 7 8 9 a0

Note matrix multiplication is quite fast in GPUs

N %Y Y - X XY Y2 -
0000 an
o =
0000 an
EP, =~ 4 Zi
[j[jC]C]D OO0
X2 %3 Y Y, X, X X3 Y7 Y2
Attention mask
o -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf
- -inf -inf -inf -inf -inf -inf -inf -inf -inf
o~ -inf -inf -inf -inf -inf -inf -inf -inf
© -inf -inf -inf -inf -inf -inf -inf -inf
-+ -inf -inf -inf -inf -inf -inf -inf
w -inf -inf

t: Arman Cohan

0.30

0.25

0.20

-0.15

-0.10

-0.05

-0.00
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2 X3 Yq Yy - X XY Y2

G9! JOHNS HOPKINS
)

] | A=A Zi
00000 am
Attention mask 00
] 00000 00
N X X3 Y% Y X X X3 Y7 Y2
oD Coon R i s Masked attention raw scores
N o |-0.08| -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf
” —_— ~ | -0.09 | -0.0 | -inf sinf [ -inf | -inf [ -inf | -inf | -inf -inf [ -inf | -inf
o | 086 | 119 | 159 | -inf | <inf | -inf | -nf | -inf | <nf | -inf | -inf | -inf
[l e feefemfre o] o | 012 |-003 |-002 | 0.88 | -inf | -inf | -inf | -inf | -inf | -inf | -inf | -inf
< | 051|017 | 013 024 | -inf | -nf | -inf [ -inf | -inf | -inf | -inf
w | 0.24 043 | 0.74 | 0.96 anf | -inf | -nf | -inf | -inf | -inf
e | 026 | 01 | 093|072 |-038| 165|047 | -inf | -inf | -inf | -inf | -inf
~ |-055| 081 |o71 | 1.7 | -08 ‘| -032| 1.78 | -inf | -inf | -inf | -inf
o | 074 |-0.76 | -0.44 | -0.08 M 013 | 125 184 | -inf | -inf | -inf
P 097 015 | 035 | -081| 011 | 1.14 1.06 | 1.87 | -inf | -inf
o | 156 | 09 | 039 | 146 | 144 | 105| 09 |-073 | 0.36 | 067 |-0.62 | -inf
= | 032|074 | 044 | 01 | 119 | 083 | 029 | 206 | 0.51 [-026 | 151 | 0.11
1 2 3 4 5 6 7 8 9 0 N 12

Slide credit: Arman Cohan
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The effect is more than just pruning out some of the

Attention maSk wirings in self-attention block.

E— Attention probabilities

e o 00 | 00 [ 0o |00 |00 |00 |00 |00 00f[o0
- - 00 [ 00 | 00 |00 | 00|00 00| o00]o00
o 00 | 00 [ 00 | 00 [ 00 | 00 | 00 | 00
0.30
» 00 | 00 [ 00 |00 |00 | 00| 00
0.25
- 00 [ 00 | 00 |00 |00 |o00] 00
020
s o i BT © 00 | 00 | 00 |00 | 00 [ 00
il Bl ol ol el el 0.15
R 011 | 00 [ 00 | 00 | 00 | 00
‘@ softmax
o [oae [ s o7 [ o [t [t | ot | o | | =0 -0.10
- e el [ = ~ 0.04 JEEM 00 | 00 | 00 | 00
ArC oD - EE - DEse - 005
EECEE R o [ 044 | 0.03 | 0.04 | 0.06 | 0.02 | 006 [LFEN 002 WFEM 00 | 00 | 00
:l.ml.mlw avln- a:) ojnlz:l'nu oz 11| o
o | 002 | 002 | 007 | 008 | 003 | 006 [l 001 [l ETM o0 | 00
= 0.41 | 0.06 |\ EHf ] 002 [ 041 [ 0.02 006 | 0.02 | 002 | 00

= | 0.05 | 0.07 [ 0.05 | 0.03 [ 0.11 | 0.08 | 0.05 [W: 0.06 | 0.03 . 0.04

Slide credit: Atmah Cohan* ° ° 7 % ° ©® % 55
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Training a Transformer Language Model

= We need to prevent information leakage from future tokens! How?

(@oldoutpu) Y = cat sat on the mat </s>

fo foleleleT1

Jonla.  Joolle.  Josle  Jada el Jalle

PPttt

R TRANSFORMER |

T Pt

6 JOHS HOPKINS X = the cat sat on the mat
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How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

TRANSFORMER

rrr T

I - the cat
CHMNS FOPELNS
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How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

TRANSFORMER

P

ﬁ JOHNS HOPKINS
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How to use the model to generate text?

= Use the output of previous step as input to the next step repeatedly

Q\@,«vt he

/7
/4

The probabilities get
revised upon adding a
new token to the input.

TRANSFORMER

P

ﬁ JOHNS HOPKINS
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How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

Tttt

the cat sat on

ﬁ JOHNS HOPKINS
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How to use the model to generate text?

I
= Use the output of previous step as input to the next step repeatedly
The probabilities get

revised upon adding a
new token to the input.

TRANSFORMER

LAl L

ﬁ JOHNS HOPKINS

61



Summary

= This is a very generic Transformer!

= We will implement this in HW5 to build a simple Transformer Language
Model!!

= Next:
o Architectural variants
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Transformer
Architectural Variants




Encoder-Decoder Architectures

= [t is useful to think of generative models as two sub-models.

“The cat sat on the [[IE}’ Some ————
model =

Q) JOHNS HOPKINS 64



Encoder-Decoder Architectures

= [t is useful to think of generative models ac twn e1ih-mndelc
Representation (compression) of the context

“The cat sat on the [IENE|” »

Encoder
Decoder

Processes the context and Produces the output sequence item by item
compiles it into a vector. using the representation of the context.
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Encoder-decoder models

= Transformer is two blocks

= Encoder = read or encode the input,
o Architecture is as we've seen

= Decoder = generate or decode the output
o Architecture is identical to the encoder
but we give it the ability to

also attend to the input

Encoder

B 1oHns HOPE NS The cat is
1fj-'

cute

Le

chat
1

est

mignon




Tl‘anSfOI‘mer [Vaswani et al. 2017]

Output

Probabilities
(for y;)

&

auto-regressive
decoding

Positional
Encoding

Positional
Encoding

e \/ \L/ g

(shift right)

t++

@ JOHNS HOPEINS

Input Output
Embedding Embedding

[Slide credit: CS886 at UWaterloo]
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Tl‘anSfOI‘mer [Vaswani et al. 2017]

Add & Norm

X
N Viulti-Head
Positional
Encoding

@ JOHNS HOPKINS

Input
Embedding

>—>
Output
Embedding

[Slide credit: CS886 at UWaterloo]

Output

Probabilities

(for y¢)

&

auto-regressive
decoding

Positional
Encoding

(shift right)

t++
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Tl‘a nSfOI‘meI‘ [Vaswani et al. 2017]

Positional
Encoding

xl xz oo xn #

-l

Add & Norm

Feed
Forward

Embedding

Output
eﬁ?r;?ratﬁr . Probabilities
(prediction head) (for y,)

Add & Norm

Multi-Head
Cross-
Attention

w

Add & Norm

Multi-Head
Self-

E)—@ Positional
Encoding

[Slide credit: CS886 at UWateroo]

auto-regressive
decoding

Decoding
Procedure

(%)

(shift right)

t++




Tl‘a nSfOI‘meI‘ [Vaswani et al. 2017]

o«

Positional
Encoding

xl xz oo xn #

Add & Norm

Feed
Forward

Embedding

Linear

Add & Norm

Multi-Head
Cross-
Attention

w

Add & Norm

Multi-Head
Self-

[Slide credit: CS886 at UWateroo]

Output

Probabilities
(for yt)

auto-regressive
decoding

69_@ Positional
Encoding

Decoding
Procedure

(%)

(shift right)

t++
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Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Computation of encoder attends to both sides.

~=-m—- | |

I I I I I I

I I I I I I

(U (—— ——
Encoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output

Probabilities
Linear
g )
| Add & Norm |<ﬁ
Feed
Forward
' R Add & Norm
_ .
s e Multi-Head
Feed Attention
Forward T} Nx
—
Nix Add & Norm
Add & Norm Bl
Multi-Head Multi-Head
L Attention Attention
At 1t
— J ' —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)


https://arxiv.org/abs/1706.03762

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous

computation of encoder

Encoder-Decoder Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output

Probabilities
Linear
4 N\
| Add & Norm |<ﬁ
Feed
Forward
' ™ Add & Norm
[ Add & Norm | -
0 Bl BT Multi-Head
Feed Attention
“award | 77 Nx
N——
N Add & Norm
p—>| Add & Norm l Bl
Multi-Head Multi-Head
Attention Attention
L s
— J \ —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)


https://arxiv.org/abs/1706.03762

0.0
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75

10.0

12,5
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Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previ

ous

computation of encoder as well as decoder’s

own generations

MaskedDecoder Self-Attention

[Attention Is All You Need, Vaswani et al. 2017]

Output

Probabilities
Linear
g )
| Add & Norm |<ﬂ
Feed
Forward
' ™\ Add & Norm
[ Add & Norm | .
s e Multi-Head
Feed Attention
Forward T} Nx
Nix Add & Norm
(—>| Add & Norm ! Bl
e Multi-Head
Attention I Attention
it 1t
\_ ‘ J ' —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)


https://arxiv.org/abs/1706.03762

Tl‘a nSfOI‘mer [Vaswani et al. 2017]

= Atany step of decoder, it attends to previous
computation of encoder as well as decoder’s
own generations

= At any step of decoder, re-use previous
computation of encoder.

= Computation of decoder is linear,
instead of quadratic.

[Attention Is All You Need, Vaswani et al. 2017]

Output

Probabilities
Linear
g )
| Add & Norm |<ﬂ
Feed
Forward
' ™\ Add & Norm
_ .
s e Multi-Head
Feed Attention
Forward T} Nx
—
Nix Add & Norm
p—>| Add & Norm l Bl
Multi-Head Multi-Head
Attention Attention
At 1t
— J ' —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs 74

(shifted right)


https://arxiv.org/abs/1706.03762

Qutput

Probabilities
| |
Recap: Transformer
4 N\
| Add & Norm |<ﬁ
) Feed
= Yaaay we know Transformers now! % S
= An encoder-decoder architecture . :
. (A5 Nom) .
= 3 forms of attention ——— T
enton
Forward J D) Nx
N\ »
_- - - — o - ﬁ@i@ Masked
I [ I 1 I 1 Multi-Head Multi-Head
| : 1 : I : ‘ | : Attention Attention
| Fpe— | e — | S b ‘ h ’ ‘ ’
1 J — )

Encoder-Decoder Attention

- . - Positional Positi I
A7 7 W 7 N N crodng QO ) Fostions
1 |
1 |

[ I I I I | : | : Input Output
| I | I I ! ! Embedding Embedding
_ Lo _ __ __1 __
Encoder Self-Attention MaskedDecoder Self-Attention T T
Inputs Outputs

[Attention Is All You Need, Vaswani et al. 2017] (shifted right)



https://arxiv.org/abs/1706.03762

Quiz: Enc-Dec Cost

= Source data (large!):
o The references for a Wikipedia article.
o Web search using article section titles, ~ 10 web pages per query.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o O(N)+0(M) No, self attention is all-to-all
o O(N)+0(M)+ 0(NM) and so quadratic.

o O(N?)+0(M?*)+ O(NM)
o O(N?) +0(M?

L' ' [Slide: John Canny]
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Quiz: Enc-Dec Cost

= Source data (large!):
o The references for a Wikipedia article.
o Web search using article section titles, ~ 10 web pages per query.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o O(N) + 0(M)
o O(N)+0(M)+ O(NM) No, self attention is all-to-all
o O(N?)+0M?*)+0(NM) and so quadraticin M and N.
o O(N?) +0(M?)

L' ' [Slide: John Canny]
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Quiz: Enc-Dec Cost

= Source data (large!):
o The references for a Wikipedia article.
o Web search using article section titles, ~ 10 web pages per query.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o O(N) + 0(M)
o O(N)+0(M)+ O(NM) No, self attention is all-to-all
o O(N?)+0M?*)+0(NM) and so quadraticin M and N.
o O(N?) +0(M?)

L' ' [Slide: John Canny]
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Quiz: Enc-Dec Cost

= Source data (large!):
o The references for a Wikipedia article.
o Web search using article section titles, ~ 10 web pages per query.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o O(N)+o0o(M)
o O(N)+0(M)+O0(NM)
o O(N?)+0(M?*)+ O(NM)

o 0(N?)+0WM?)
<(No, cross attention is missing. J

L' ' [Slide: John Canny]
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Quiz: Enc-Dec Cost

= Source data (large!):
o The references for a Wikipedia article.
o Web search using article section titles, ~ 10 web pages per query.

= For a passage of length N and a summary of length M, the complexity of the
attention is:

o«

©)

O
O
O

O(N) + 0(M)

O(N) +0(M) + O(NM)
O(N%) +0(M?) + O(NM)
0O(N?%) + 0(M?)

Yes. The three terms are respectively the Encoder
self-attention, Decoder self-attention, and Cross
attention.

|

[Slide: John Canny]
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Quiz: Enc-Dec Connections

= Which best represents encoder-decoder connections?

encoder decoder ////7 encoder

encoder decoder encoder
encoder decoder encoder
. 4
encoder decoder encoder
encoder decoder encoder
encoder decoder \\\\‘ encoder
Incorrect
B 1a 1 EFT
o JOHMS HOPELMNS
L :

[Slide credit: CS886 at UWaterloo]

Correct
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Considerations about

computational cost
iIn Transformers




Making decoding more efficient

Q = Wix
K = Wkx
A V=W
] T
/Xl\ Attention (X) = softmax (%) V

K

i v

[Slide credit: Arman Cohan]

L-.‘. TOHMS HOPE NS
e e 85 -



Making decoding more efficient

Q = qu
K = Wkx
) IV =WUx
N T
/Xi\ Attention (X) = softmax (%) vV
g |
g: the next token K i V

previous context

[Slide credit: Arman Cohan]

Q) JOHNS HOPKINS 86



Making decoding more efficient

Q = Wix
K = Wkx
IV =WUx
Attention(Xx) ft (—QKT> V
ention(x) = softmax
Vd
g L Q
q: the next token K = WkX . V = WVX
e
/ previous context

Cat Sat on the [Slide credit: Arman Cohan]

& JOHNS HOPKINS
& o Hor 87



Making decoding more efficient

Q — qu
K = Wkx
V =W'x
Attention(x) ft (QKT> %4
ention(X) = softmax| ——
Vd
g :

q: the next token K = NVkX “ VLJVL;_—WV_*_—

‘ / previous context

Sat on the [Slide credit: Arman Cohan]

&R [OHNS HOPKINS '
g s or 88




Making decoding more efficient

Q = Wix
K = Wkx
IV =W'x
Attention(X) ft (—QKT> 14
ention(X) = softmax
Vd
g L
q: the next tokin Vi V — WVX

[Slide credit: Arman Cohan]
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Making decoding more efficient

Q = Wix
K = Wkx
IV =WUx
Attention(x) = soft (Q—KT> %
ention(X) = softmax 7
q |
q: the next token K = WkX V = WVX
> —V
\ /
\ S

previous context

[Slide credit: Arman Cohan]

The cat £ '

QS T 90




Making decoding more efficient

Q = Wix
K = Wkx
IV =WUx
Attention (X) ft (—QKT> 14
ention(X) = softmax
Vd
g | |
q: the next token K = WkX V = WVX

[Slide credit: Arman Cohan]

Y E o1



Making decoding more efficient

Q — qu

K = Wkx

] ] V =W'x

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! # Attention(x) = softmax <W> 4
g
q: the next token K = WkX V = WVX
v  / 4
\\ / ///"'}
7 previous context

The cat 4 on ’the [Slide credit: Arman Cohan]

Q) JOHNS HOPKIN 92



Making decoding more efficient

Q:qu
K = Wkx
V =W'x

= We are computing the Keys and Values many times! OKT
o Let’s reduce redundancy! # Attention(x) = softmax <W> 4

Knew = Wix[:, : —1]

q

q: the next tok;; K Cached V Cached

AN N

\\ /M View = WX[:, : —1]

The Cat Sat on Ithe [Slide credit: Arman Cohan]

W JOHNS HOTKINS 93




Making decoding more efficient

Q = Wix
K = Wkx
. ) i V =W'x
= Question: How much memory does this K, V cache require? OKT
Attention(x) = softmax (—) %4
Vd
Knew = WiX[:, : — 1]
q ‘
q: the next tok;; K Cached V Cached
\ yvl

\\ /M View = WX[:, : —1]

The Cat Sat on Ithe [Slide credit: Arman Cohan]

QP Jouns Horke 94




Writing our own
Transformer




Clone Helper Function

= Create N copies of pytorch nn.Module
= The Transformer’s structure contains a lot of design repetition (like VGG)
= Remember these clones shouldn’t share parameters (for the most part)

def clones(module, N):
"Produce N identical layers."

return nn.ModuleList( [copy.deepcopy(module) for _ in range(N)])

o«

[Slide credit: CS886 at UWaterloo]
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Create Embedding

= Create vector representation of sequence vocabulary
= nn.Embedding creates a lookup table to map sequence vocabulary to unique vectors

class Embeddings(nn.Module):
def __init_ (self, d_model, vocab):
super(Embeddings, self).__init_ ()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model

def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)

S
o«

[Slide credit: CS886 at UWaterloo]
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Positional Encoding

class PositionalEncoding(nn.Module):

. . "Implement the PE function."

= Add information about an
element’s pOSition in a sequence def __init_ (self, d_model, dropout, max_len=5000):

tO |tS representation super(PositionalEncoding, self).__init_ ()

self.dropout = nn.Dropout(p=dropout)
= Element wise addition of N | |
SinUSOidaI enCOding # Compute the positional encodings once in log space.

pe = torch.zeros(max_len, d_model)
position = torch.arange(@®, max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(@, d_model, 2) x —-(math.log(10000.0) / d_model)
)

POSitionaI pel:, 0::2] = torch.sin(pos::.t::.on * d%v_term)
. pel:, 1::2] = torch.cos(position % div_term)
EnCOdlng pe = pe.unsqueeze(0)

self.register_buffer("pe", pe)
def forward(self, x):

X = x + self.pe[:, : x.size(1)].requires_grad_(False)
return self.dropout(x)

[Slide credit: CS886 at UWaterloo]



Attention block

def attention(query, key, value, mask=None, dropout=None):

"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)

scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)

if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

—1e9 is a large negative number,
which leads to softmax(-1€9) = 0

[Slide credit: CS886 at UWaterloo]

Subsequent Mask
1.0
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| |
Mu‘tl-Head Auentlordef forward(self, query, key, value, mask=None):

"Implements Figure 2"
I

if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)

nbatches = query.size(0)

# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [
lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)

for lin, x in zip(self.linears, (query, key, value))
class MultiHeadedAttention(nn.Module):

def __init_ (self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init_ ()
assert d_model % h ==
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)

# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout

# 3) "Concat" using a view and apply a final linear.
x = (
x.transpose(1, 2)
.contiguous()
.view(nbatches, -1, self.h % self.d_k)
)
del query
del key
= del value

B JoHNS HOPKINS e e
(Slide credit: €5886 at UVama fogf- tinearsi=11(x
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FeedForward Layer

class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."”

def __init_ (self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init_ ()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))

B 1. AP

III JOHMS e
[Slide credit: CS886 at UWaterloo]
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Sublayer Connections

class SublayerConnection(nn.Module):
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.

def __init_ (self, size, dropout):
super(SublayerConnection, self).__init_ ()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer):

"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))

[Slide credit: CS886 at UWaterloo]
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Encoder Layer

class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"

0

Feed F d
def __init_ (self, size, self_attn, feed_forward, dropout): eed ronwar

super(EncoderLayer, self).__init_ ()

self.self_attn = self_attn (" Multi-Head )

self.feed_forward = feed_forward Cross-
self.sublayer = clones(SublayerConnection(size, dropout), 2) \Attention __J
self.size = size

- Masked
def forward(self, x, mask): '\ffu't""'ead Multi-Head
Self-Attenti -
"Follow Figure 1 (left) for connections." ST-ACentlon SHEAReNon
x = self.sublayer[0] (x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
B JOHNS HOPKINS
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Decoder Layer

= Same as encoder layers other than:

o the additional multi-head attention block to preform

cross-attention with the output representation from the encoder

class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"

def __init_ (self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init_ ()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)

def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."

memory
self.sublayer[0] (x, lambda x: self.self_attn(x, x, x, tgt_mask))
self.sublayer[1] (x, lambda x: self.src_attn(x, m, m, src_mask))

return self.sublayer[2](x, self.feed_forward)

mes=
X =
X0 =

| o |

=0

-

[Slide credit: CS886 at UWaterloo]
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The Prediction Head

= A final linear mapping
= Apply softmax to convert logits to probabilities

class Generator(nn.Module):
"Define standard linear + softmax generation step."

def __init__ (self, d_model, vocab):
super(Generator, self).__init_ ()
self.proj = nn.Linear(d_model, vocab)

def forward(self, x):
return log_softmax(self.proj(x), dim=-1)

o«

[Slide credit: CS886 at UWaterloo]
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Build each block

class Encoder(nn.Module):
"Core encoder is a stack of N layers"

def __init_ (self, layer, N):
super(Encoder, self).__init_ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)

57 JoHNS HOPKINS
.

[Slide credit: CS886 at UWaterloo]

def

def

class Decoder(nn.Module):
"Generic N layer decoder with masking."

__init_ (self, layer, N):

super(Decoder, self).__init__ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

forward(self, x, memory, src_mask, tgt_mask):

for layer in self.layers:

x = layer(x, memory, src_mask, tgt_mask)

return self.norm(x)
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Putting it Together

|
class EncoderDecoder(nn.Module):

A standard Encoder-Decoder architecture. Base for this and many

other models.

def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init_ ()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator

def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)

def decode(self, memory, src_mask, tgt, tgt_mask):

r}wl'?l\*ih':h:\~ return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) 108
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Initialize the model

def make_model(
src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1

"Helper: Construct a model from hyperparameters."

c = copy.deepcopy

attn = MultiHeadedAttention(h, d_model)

ff = PositionwiseFeedForward(d_model, d_ff, dropout)

position = PositionalEncoding(d_model, dropout)

model = EncoderDecoder (
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab),

# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model

P e 109
[Slide credit: CS886 at UWaterloo]



	Slide 1: Transformer Architecture
	Slide 2: RNNs, Back to the Cons
	Slide 3: Language Models: History Recap
	Slide 4: Chapter Plan 
	Slide 5
	Slide 6: Self-Attention 
	Slide 7: RNN vs Transformer
	Slide 8: Attention 
	Slide 9: Defining Self-Attention
	Slide 10: Defining Self-Attention
	Slide 11: Defining Self-Attention
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Question
	Slide 19: Self-Attention: Matrix Notation
	Slide 20: Self-Attention
	Slide 21: Self-Attention: Back to Big Picture  
	Slide 22: Computational and Space Complexity
	Slide 23: Computational and Space Complexity (2)
	Slide 24: Multi-Headed Self-Attention
	Slide 25: Multi-Headed Self-Attention
	Slide 26: Combine with FFN 
	Slide 27: How Do We Prevent Vanishing Gradients?
	Slide 28: Putting it Together: Self-Attention Block
	Slide 29: Summary: Self-Attention Block  
	Slide 30
	Slide 31: How Do We Make it Deep? 
	Slide 32: From Representations to Prediction
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Absolute Positional Embeddings 
	Slide 37: Absolute Positional Embeddings 
	Slide 38: Math Recap: Sine and Cosine Functions
	Slide 39: Absolute Positional Embeddings 
	Slide 40: Quiz
	Slide 41: Visualizing Absolute Positional Embeddings 
	Slide 42
	Slide 43: Transformer-based Language Modeling
	Slide 44: Training a Transformer Language Model
	Slide 45: Training a Transformer Language Model
	Slide 46: Training a Transformer Language Model
	Slide 47: Training a Transformer Language Model
	Slide 48: Training a Transformer Language Model
	Slide 49: Training a Transformer Language Model
	Slide 50: Training a Transformer Language Model
	Slide 51: Attention mask
	Slide 52: Attention mask
	Slide 53: Attention mask
	Slide 54: Attention mask
	Slide 55: Attention mask
	Slide 56: Training a Transformer Language Model
	Slide 57: How to use the model to generate text?
	Slide 58: How to use the model to generate text?
	Slide 59: How to use the model to generate text?
	Slide 60: How to use the model to generate text?
	Slide 61: How to use the model to generate text?
	Slide 62: Summary 
	Slide 63
	Slide 64: Encoder-Decoder Architectures 
	Slide 65: Encoder-Decoder Architectures 
	Slide 66: Encoder-decoder models
	Slide 67: Transformer [Vaswani et al. 2017]
	Slide 68: Transformer [Vaswani et al. 2017]
	Slide 69: Transformer [Vaswani et al. 2017]
	Slide 70: Transformer [Vaswani et al. 2017]
	Slide 71: Transformer [Vaswani et al. 2017]
	Slide 72: Transformer [Vaswani et al. 2017]
	Slide 73: Transformer [Vaswani et al. 2017]
	Slide 74: Transformer [Vaswani et al. 2017]
	Slide 75: Recap: Transformer
	Slide 76: Quiz: Enc-Dec Cost 
	Slide 77: Quiz: Enc-Dec Cost 
	Slide 78: Quiz: Enc-Dec Cost 
	Slide 79: Quiz: Enc-Dec Cost 
	Slide 80: Quiz: Enc-Dec Cost 
	Slide 81: Quiz: Enc-Dec Connections 
	Slide 82
	Slide 83
	Slide 85: Making decoding more efficient
	Slide 86: Making decoding more efficient
	Slide 87: Making decoding more efficient
	Slide 88: Making decoding more efficient
	Slide 89: Making decoding more efficient
	Slide 90: Making decoding more efficient
	Slide 91: Making decoding more efficient
	Slide 92: Making decoding more efficient
	Slide 93: Making decoding more efficient
	Slide 94: Making decoding more efficient
	Slide 96
	Slide 97: Clone Helper Function 
	Slide 98: Create Embedding 
	Slide 99: Positional Encoding
	Slide 100: Attention block
	Slide 101: Multi-Head Attention
	Slide 102: FeedForward Layer 
	Slide 103: Sublayer Connections
	Slide 104: Encoder Layer 
	Slide 105: Decoder Layer 
	Slide 106: The Prediction Head 
	Slide 107: Build each block
	Slide 108: Putting it Together
	Slide 109: Initialize the model

