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Transformers: Recap 



After Transformer …



Yang et al. Harnessing the Power of 

LLMs in Practice: A Survey on 

ChatGPT and Beyond, 2023
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The Phases of Our Understanding 

“Language modeling is a useful subtask for many NLP tasks” 
– everyone, pre-2018

“Language modeling is a useful supertask for many NLP tasks” 
– everyone, post-2018
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Chapter Plan 

1. Transformer-based families of Language Models 

2. Architectural variants 

3. Thinking about pre-training data 

4. Practical hacks and variants 

Chapter goal — extending out understanding of training transformer language 
models. 
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Transformer 
Language Model Families
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Impact of Transformers 

▪ A building block for a variety of LMs 

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, LaMDA

❖ Other name: causal or auto-regressive language model 

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?
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Encoder-Decoder Family of 
Transformers 

Encoder-

Decoders
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Encoder-Decoder models: T5

▪ Architecture:

o The encoder portion benefits from bidirectional context.

o The decoder portion is used to train the whole model 
through language modeling. 

o Similar to the original Transformer enc-dec architecture.
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Encoder-Decoder models: T5

▪ Pretraining objective: Randomly corrupt tokens and replace with sentinel tokens 
(<x>, <y>) that is unique over the example.
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Encoder-Decoder models: T5
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Recap: Enc-dec models

▪ The most canonical form of Transformers. 

▪ Notable example: T5.
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Encoder-only Family of Transformers 
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Encoder-only models (BERT)

▪ Transformer encoder-only

▪ BERT is trained to uncover masked tokens. 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

brown 0.92
lazy 0.05

playful 0.03

https://arxiv.org/abs/1810.04805
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Encoder-only models (BERT): 
Probing its predictions 

▪ Masking words forces BERT to use context in both directions to predict the masked 
word.

https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased
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Encoder-only models (BERT): 
Probing its predictions 

▪ Masking words forces BERT to use context in both directions to predict the masked 
word.

https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased
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Encoder-only models (BERT): 
Pre-training Objectives 

▪ Token masking: Randomly mask 15% of tokens and train the model to recover them. 
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Encoder-only models (BERT): 
Pre-training Objectives 

▪ Token masking: Randomly mask 15% of tokens and train the model to recover them. 

o Too little masking: Too expensive to train 

o Too much masking: Underdefined

• (not enough info for the model to recover the masked tokens)

▪ Sentence ordering: Predict sentence ordering

o Learns the relationships between sentences

o 50% correct ordering, and 50% random incorrect ones
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Encoder-only models (BERT): 
Fine-tune for tasks 

o Idea: Make pre-trained model usable in downstream tasks (often classification)

o Initialized with pre-trained model parameters

o Fine-tune model parameters using labeled data from downstream tasks

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805
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Encoder-only models (BERT): One of the 
Early Signs on the Effectiveness of Scale

▪ Going from 110M -> 340M params helps a lot 

▪ Improvements have not plateaued! 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805
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Encoder-only models (ModernBERT): 
Recent Reincarnation of BERT

▪ Essentially a BERT-like architecture but a few key changes: 

o Longer context: Trained for context window of 8,192 tokens (vs. 512 in BERT)

o MLP layer: Drop the bias term to save costs.

o More norms: Add an extra normalization layer after embeddings. 

o Replaced activations: Replaced GeLU activation with GeGLU (will talk about this)

o Pos encoding: Replaced the sine/cosine with rotary embeddings (will talk about this)

[Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference, 2024]
https://huggingface.co/blog/modernbert

https://arxiv.org/abs/2412.13663
https://huggingface.co/blog/modernbert
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Recap: Encoder-only models

▪ Transformer-based decoder-only models trained on massive piles of data. 

▪ Common use-cases: 

o Provide incredible framework contextualized embeddings of words.

o It also allows fine-tuning on your particular task (usually top layers).

▪ However, they were not designed to generate text – unless you do 
additional work. 



24

Decoder-only Family of Transformers 

Decoders
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Decoder-only (GPT)

▪ Generate sequences where each token is predicted based on the previously 
generated tokens

▪ Use causal masking to ensure the causality

▪ Trained to maximize log-likelihood defined for next-token prediction. 

Figure source: https://peterbloem.nl/blog/transformers

https://peterbloem.nl/blog/transformers
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GPT4

▪ Transformer-based 

o The rest is …. mystery! ☺

o Rumor: GPT-4 is a Mixture of Experts model (we’ll talk about it). 

o If we’re going based on costs, GPT4 is ~15-30 times costlier than GPT3. That 
should give you an idea how its likely size! 

▪ Note, these language models involve more than just pre-training. 

o Pre-training provides the foundation based on which we build the model. 

o We will discuss the later stages (i.e., alignment) in a 2-3 weeks. 

https://openai.com/pricing

https://openai.com/pricing
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Other Available [Decoder] LMs

EleutherAI: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B) 

https://huggingface.co/EleutherAI

https://6b.eleuther.ai/

LLaMA, 65B:     https://github.com/facebookresearch/llama

Mistral and Mixtral: 

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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Summary: Existing models 

▪ There is a ton of models out there. 

▪ We talked about a few: BERT, T5, GPT family. 

▪ You should always check the existing leaderboards (e.g., ChatBotArena) to see 
what’s the best and latest. 

▪ Next, we’re going to spend a quite a bit of time delving into design decisions for 
training LLMs. 
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LMSys ChatArena https://lmarena.ai/

https://lmarena.ai/
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Pre-training language models: 
Architectures
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Training Pipeline for LLMs

Pretraining Adaptation and Alignment
Model with 

random weights
Pretrained 

model

High-utility model

(general-purpose or 

specialized)

(smaller but labeled data)(Large but unlabeled data)

▪ There is extensive literature about best practices for pretraining

o What choice of architectures are good? 

o How do you prepare pre-training data? 

o What considerations go into efficient training of the models? 

o …

▪ Our goal in this chapter is to summarizes the latest best and common practices.

Our focus



We will visit a few of 
these branches … 

Variants of positional 
embeddings 

Architectural choices

Multi-modal models

But there is a lot 
that we do not 

cover … 
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How consistent are the architectures 
used in existing LLMs? 
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Another View of Architectural Variations 

Low consensus
(except pre-norm)

Most try to follow 
previous successful 
choices. 

[Slide credit: Tatsu Hashimoto] 
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When should we do 
normalization? 
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Quiz: Pre-norm vs Post-norm 

▪ Which is the original implementation? 

▪ Which one is your favorite? 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝑥

𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 ,
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Pre-norm vs Post-norm 

▪ Pre-norm (right) is set up so that LayerNorm
does not disrupt the residual stream (in gray). 

▪ In theory, both should work fine. 

▪ In practice, however, Pre-norm is 
preferred over Post-norm. 

[On Layer Normalization in the Transformer Architecture, 2020]
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Pre-norm vs Post-norm — Explanation? 

▪ Stability, larger LRs for large networks and no need for warm up. 

[Left and right from: On Layer Normalization in the Transformer Architecture, 2020]

[middle from: Transformers without Tears: Improving the Normalization of Self-Attention, 2019] 

Gradient spikes

Gradient attenuation

[Slide credit: Tatsu Hashimoto] 

Bonus

No need for warm-up stage
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Layer Norm vs RMSNorm

▪ Original transformer: LayerNorm

o Normalizes the mean and variance across 𝑑𝑚𝑜𝑑𝑒𝑙

▪ Many modern LMs: RMSNorm

o Does not subtract mean or add a bias term 

[Slide credit: Tatsu Hashimoto] 

Notable models: 
GPT3/2/1, OPT, GPT-J, BLOOM

Notable models: 
LLaMA-family, PaLM, Chinchilla, T5
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Why RMSNorm? 

▪ Modern explanation – it’s faster (and just as good).

o Fewer operations (no mean calculation)

o Fewer parameters (no bias term to store)

▪ Does this explanation make sense?

o Matrix multiplies are the vast majority of FLOPs (and memory)

o Non-matmul ops only make up 0.2% of our FLOPS

• So perhaps it doesn't matter that GPUs compute non-matmul ops slower.  

[Slide credit: Tatsu Hashimoto] 

[Data Movement Is All You Need: A Case Study on Optimizing Transformers, 2020]

"Tensor Contraction" := matmuls

Bonus
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Why RMSNorm? 

▪ RMSNorm runtime (and surprisingly, perf) gains have been seen in papers

[Slide credit: Tatsu Hashimoto] 

[Do Transformer Modifications Transfer Across Implementations and Applications?, 2021]

Bonus
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Is the “bias” term 
in FFNs necessary?  

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
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The Bias Terms 

▪ Most modern transformers don’t have bias terms.

o Original Transformer:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
and 𝑓 was defined as ReLU: 𝑓 𝑥 = max(0, 𝑥)

o Most implementations (if they’re not gated):

FFN 𝐱 = 𝑓 𝐱𝑾1 𝑾2

▪ Reasons: memory (similar to RMSnorm) and optimization stability.

[Slide credit: Tatsu Hashimoto] 

𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑
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Recap so far 

▪ Basically, everyone does pre-norm.

o Intuition – keep the good parts of residual connections

o Observations – nicer gradient propagation, fewer spike

▪ Most people do RMSnorm

o In practice, works as well as LayerNorm

o But, has fewer parameters to move around, which saves on wallclock time

▪ Bias term: 

o People more generally drop bias terms since the compute/param tradeoffs are 
not great.

[Slide credit: Tatsu Hashimoto] 
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What activations 𝑓(. )
should we use? 

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
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Activations 

▪ No much consensus: 

ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU, … 
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Activations: ReLU vs GeLU

▪ ReLU: 

▪ GeLU: 

Notable models: 
Original transformer, T5,
Gopher, Chinchilla, OPT

[Slide credit: Tatsu Hashimoto] 

FFN 𝐱 = max 0, 𝐱𝑾1 𝑾2

FFN 𝐱 = GELU 𝐱𝑾1 𝑾2

Notable models: 
GPT1/2/3, GPTJ, GPT-
Neox, BLOOM
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GELU, in details 

FFN 𝐱 = GELU 𝐱𝑾1 𝑾2

GELU 𝐲 ≔ 𝐲Φ(𝐲)

▪ Here Φ(𝐲) the cumulative distribution function (CDF) of a normal distribution:

Φ y =
1

2
1 + erf

𝑥

√2
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Activations: Gated activations (*GLU)

▪ Gated activations modify the first part of the activations:

FFN 𝐱 = max 0, 𝐱𝑾1 𝑾2

▪ Instead of a linear + ReLU, augment the above with an (entrywise) linear term: 

max 0, 𝐱𝑾1 → max 0, 𝐱𝑾1 ۨ (𝐱𝐕)

▪ This gives the gated variant (ReGLU) – note that we have an extra parameter 𝐕:

FFN 𝐱 = max 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

[Slide credit: Tatsu Hashimoto] 

Bonus
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Activations: Gated activations variants

▪ GeGLU

▪ SwiGLU: swish function is  𝑥 ∗ sigmoid(𝑥): 

▪ Note: Gated models use smaller dimensions for the 𝑑ff by 2/3

[Slide credit: Tatsu Hashimoto] 

Notable models: 
T5 v1.1, mT5, LaMDA

Notable models: 
LLaMa, PaLM

FFN𝐺𝑒𝐺𝐿𝑈 𝐱;𝑾1,𝑾2, 𝑽 = GELU 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

FFN𝑆𝑤𝑖𝐺𝐿𝑈 𝐱;𝑾1,𝑾2, 𝑽 = Swish 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

Bonus
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Do Gated Linear Units work? 

▪ Yes, fairly consistently so.

[GLU Variants Improve Transformer, 2020]

[Slide credit: Tatsu Hashimoto] 

Bonus

https://arxiv.org/pdf/2002.05202
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Do gated linear units work? 

▪ Yes, fairly consistently so.

[Do Transformer Modifications Transfer Across Implementations and Applications?, 2021]

[Slide credit: Tatsu Hashimoto] 

Bonus
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Recap: Gating, activations 

▪ Many variations (ReLU, GeLU, *GLU) across models.

▪ *GLU isn’t necessary for a good model (see GPT3)

▪ But evidence points towards somewhat consistent gains from Swi/GeGLU
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Serial vs Parallel layers
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Serial vs Parallel Layer 

▪ Normal transformer blocks are serial – they compute attention, then the MLP

o Can they be parallelized? GPT-J introduced a simple change to do so! 

▪ The standard “serial” formulation: 

𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥

▪ The parallel formulation:
𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥))

o Note, LayerNorm can be shared, and matrix multiplies can be fused

▪ From PaLM paper: “The parallel formulation results in roughly 15% faster training 
speed at large scales … Ablation experiments showed a small quality degradation at 
8B scale but no quality degradation at 62B scale”

Notable models: 
GPTJ, PaLM, GPT-NeoX

[PaLM: Scaling Language Modeling with Pathways, 2022]

https://arxiv.org/pdf/2204.02311
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Recap

▪ Pre-vs-post norm: 

o Everyone does pre-norm (except OPT350M).

▪ Layer vs RMSnorm:

o RMSnorm has clear compute wins, sometimes even performance.

▪ Gating: 

o GLUs seem generally better, though differences are small

▪ Serial vs parallel layers:

o No extremely serious ablations; but parallel layers have a compute win.
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Do you need all those keys? 
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Self-Attention layer variations 

▪ We’re going to discuss a few variations of standard self-attention that are motivated 
by computational bottlenecks. 

▪ Previously we talked about one bottleneck: # of arithmetic operations 

▪ Now we’re going to connect that to the # of read/writes from memory (IO)
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Diversion: Arithmetic Intensity  

▪ Arithmetic Intensity of a program execution: 

(# of floating-point operations) / (# of data bytes transferred to memory)  

▪ It helps determine whether a program is compute-bound or memory-bound:
o If AI is high, performance is limited by how fast the GPU can compute. 

o If AI is low, performance is constrained by how fast data can be transferred between global 
memory and GPU cores.

▪ A good rule of thumb: 

o Memory-bound:  AI < 10 FLOPs/byte

o Balanced:  10 ≤ AI ≤ 100 FLOPs/byte

o Compute-bound:  AI > 100 FLOPs/byte
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Quiz 

▪ If a GPU kernel has high arithmetic intensity, which of the following is true?

o A) Performance is mostly limited by memory bandwidth

o B) Performance is mostly limited by compute throughput

o C) Memory accesses dominate execution time

o D) The workload is not well-suited for GPUs

▪ Answer: High AI means the GPU spends more time computing per byte of memory 
fetched, making it compute-bound rather than memory-bound. Hence, B. 
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Arithmetic Intensity: An example

▪ We are going to compute AI for the first operation in Self-Attention.

▪ Note we assume that the full input sequence is given at once (e.g., training time). 

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we want to compute: 𝐱𝐖𝑖
𝑞

. From last week: 

AI = 𝑂
𝑏𝑛𝑑2

𝑑2 + 2𝑏𝑛𝑑
= 𝑂

𝑑2 + 2𝑏𝑛𝑑

𝑏𝑛𝑑2

−1

= 𝑂
1

𝑏𝑛
+
2

𝑑

−1

Dimensions Operation Computations IO

𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 𝐱𝐖𝑖

𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑)



62

Quiz 

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we know that the AI for computing 𝐱𝐖𝑖
𝑞

is: 

AI = 𝑂
1

𝑏𝑛
+
1

𝑑

−1

▪ This process is_____? 

o Memory-bound 

o Balanced

o Compute-bound 

▪ Answer: Our AI is large-ish. Depending on hyperparams, this is either balanced or 
compute-bound.  

o If 𝑛 = 10 (sent len), 𝑏 = 10 (batch size), 𝑑 = 512 (hidden dim). Then AI = 71.  

o If 𝑛 = 30 (sent len), 𝑏 = 20 (batch size), 𝑑 = 512 (hidden dim). Then AI = 179.  
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Arithmetic Intensity of Training 
Self-Attention

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

All these AI values are large! 

We can continue running our 
GPUs during training! 

𝑏: batch size,

𝑛: sequence length,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑/𝑚: feature dimension inside each SA head
𝑑ff = 4𝑑: feature dimension inside FFN

Bonus

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/
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Self-Attention Cost of Computation During 
Incremental (Autoregressive) Generation

▪ Note that these numbers involve KV-caching. 

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑑2) 𝑂(𝑑2 + 2𝑏𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑑2) 𝑂(2𝑏𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑑2) 𝑂(2𝑏𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1
𝑏: batch size,

𝑛: sequence length thus far,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑ff = 4𝑑: feature dimension inside FFN

These two rows have low AI. For example, if 𝑛 = 20 (sent len), 

ℎ = 12 (num heads), 𝑑 = 512 (hidden dim), then AI = 0.93. 
Hence, our program is memory bound during inference! 

Note this is partly due to the memory-bandwidth cost of 

repeatedly loading the large "keys" and "values" tensors.

Bonus
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KV-Cache drag  

Try this calculator:

▪ Slowdown of autoregressive decoding.

o As the sequence length grows, KV cache size increases, making cache lookup slower.

o As we generate more output tokens (i.e. chatbot responding to user), throughput will slow 
down. 

▪ For GPT2, this comes out to a modest ~36 MB assuming 
we use the max sequence length of 1024 tokens and a 
batch size of 1. For larger models, however, the KV 
Cache can take up GBs of memory.

o Try this calculator:

▪ Simple idea: Retain only the last 𝐿 tokens of the 
KV-cache and compute attention using these recent tokens:

o Inference cost will be constant 𝑂(𝐿) per token. 

https://tinkerd.net/blog/machine-learning/multi-query-attention/
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Sparse / sliding window attention

▪ Right: Build sparse / structured attention that trades off expressiveness vs runtime.

▪ Left: Just use the main part of the strided pattern – let depth extend effective context (Mistral)

[Generating Long Sequences with Sparse Transformers, 2019]

Notable models: 
GPT3 and Mistral

https://arxiv.org/abs/1904.10509
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Quiz 

▪ What are the drawbacks of sliding window? 

1. If the model was not trained for sliding window, generation will be out-
of-distribution and unstable.

2. If uses few layers, it’ll retains local/recent information and cannot see 
global context.

3. After a while, it will forget the input text (e.g. the original instruction 
provided by the user).

4. All of the above.

[Slide credit: Samet Oymak] 
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Sliding Window Attention with “Sinks”

▪ Idea: We should better retain the initial tokens 

o Intuition: The model should hold on to the user prompt which 
kickstarted/instructed the LLM’s decoding 

o During training: The model always relies on tokens at initial positions.

• We can’t suddenly remove initial positions 𝟏, 𝟐, 𝟑, ... during inference.

• Removing them results in a less stable inference (position encodings become OOD). 

[Efficient Streaming Language Models with Attention Sinks, 2023]
[Slide credit: Samet Oymak] 

Bonus

https://arxiv.org/abs/2309.17453
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Sliding Window Attention with “Sinks”

▪ Standard Sliding Window Attention does work well but it requires re-computation 
of KV cache to reset window’s positional encodings back to initial positions. 

▪ StreamingLLM avoids this by always maintaining few initial positions (referred to as 
sinks). 

o Keeping initial tokens results in faster and more stable inference 

[Efficient Streaming Language Models with Attention Sinks, 2023]
[Slide credit: Samet Oymak] 

Bonus

https://arxiv.org/abs/2309.17453
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Multi-Query Attention (MQA)

▪ The idea is to reduce the memory-bandwidth cost of repeatedly loading the large 
"keys" and "values" tensors.

▪ Key idea – have multiple queries, but just one dimension for keys and values.

Small PPL w/ MQA [Shazeer 2019]

https://arxiv.org/pdf/1911.02150
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MQA in practice 
Bonus

Script

https://gist.github.com/danyaljj/27beda96053623a7499070fa4019c2a4
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Grouped Query-Attention (GQA)

▪ An interpolation between “multi-head” attention and “multi-query” attention. 

▪ Simple knob to control expressiveness (key-query ratio) and inference efficiency

Notable models: 
Llama 2, Mistral, Qwen2

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023
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Grouped Query-Attention (GQA)

▪ Does it actually work? Depends. 

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023

Inference speed as a function of GQA group size — 8 
heads gives you inference speed as good as 1 head! 

Output quality of various models; all these 
SA variants are on-par on quality.
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Recap 

▪ SA’s AI during inference is not good. 

o We’re doing a lot of IO relative to computations (KV drag). 

▪ Sliding window attention: sparsifying attention pattern by looking at nearby things. 

▪ MQA and GQA: sharing attention keys and values. 
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Parameter tying
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Embedding parameter tying 

▪ The same weight matrix is used for both the input embeddings and the output (projection) 
layer.

▪ Why? 

o Theoretical justification: The input and output 
embeddings should exist in the same space.

o Memory Efficiency: reduce the # of trainable params.

o Improved Generalization: It enforces consistency between 
input vs output — the same representations are used in both 
encoding and decoding.

Using the Output Embedding to Improve Language Models, 2017

https://arxiv.org/pdf/1608.05859
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Is there a better way to encode 
positional information? 
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𝑝1
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𝑝2
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𝑝3

O O O O O
𝑝4

Allows model to learn 
relative positioning

𝑝𝑖 are positional 
embeddings

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization
Notable models: 
Original Transformer 
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Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Limitations: 

o We can have fixed encoding for each index training position (e.g., 1, 2, 3, … 1000). 

o What happens if we get a sequence with 5000 words at test time?

▪ We want something that can generalize to arbitrary sequence lengths. 

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT
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Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o Intuition: encoding the relative positions, for example based on the distance of the tokens in 
a local window to the current token.

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT

Notable models: 
T5, Gopher, Chinchilla
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A Unified Perspective on 
Relative Positional Encoding

▪ You can rewrite the statement from the previous slide in the following form:

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋
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A Unified Perspective on 
Relative Positional Encoding

▪ We are input sequence 𝒙0, 𝒙1, … and 

o Then the unnormalized attention value between position 𝑖, and 𝑗 is: 

𝑄𝐾𝑖𝑗 = 𝑊𝑞𝒙𝒊
𝑇
𝑊𝑘𝒙𝒋 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋

▪ Now also assume that positional embeddings are added to 𝒙𝒊, i.e., they’re 𝒙𝒊 + 𝒑𝑖

𝑄𝐾𝑖𝑗 = 𝑊𝑞[𝒙𝒊+𝒑𝑖]
𝑇
𝑊𝑘[𝒙𝒋+𝒑𝑗] = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒑𝑗+𝒑𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋+ 𝒑𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒑𝑗

The original attention term: 

how much attention should we 

pay to word 𝒙𝒋 given word 𝒙𝒊

How much attention 

should we pay to word 𝒙
given the position 𝒑

How much attention 

should position 𝒑𝒊 should 
attend to position 𝒑𝒋
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Relative Positional Encoding

▪ There have been various choices:

o T5 models simplify this into learnable relative embeddings 𝑷𝒊𝒋 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o DeBERTa learns relative positional embeddings ෥𝒑𝑖−𝑗 such that: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+෥𝒑𝑖−𝑗
𝑇 𝑊𝑞

𝑇𝑊𝑘𝒙𝒋

o Tranformer-XL learns relative positional embeddings ෥𝒑𝑖−𝑗 and trainable vectors 𝒖, 𝒗 s.t.: 

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+𝒖
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋+𝒗
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗

o ALiBi learns learns a scalar 𝑚 such that:
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 − 𝑚 |𝑖 − 𝑗|

Exploring the Limits of Transfer Learning with a Unified Text -to-Text Transformer, 2020

Train Short, Test Long: Attention with Linear Bia4s2es Enables Input Length Extrapolation (2022)
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Recap 

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation

▪ RoPE embeddings:  (next slide)

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT

Notable models: 
T5, Gopher, 
Chinchilla, Deberta
Tranformer-XL, 

Notable models: 
GPTJ, PaLM, LLaMA
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Rotary Positional Encoding (RoPE)

▪ We want our embeddings to be invariant to absolute position. 

▪ We know that inner products are invariant to arbitrary rotation.

[Slide credit: Tatsu Hashimoto] 

Bonus
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Thinking About Rotation Matrix

▪ In 2D, a rotation matrix can be defined in the following form: 

𝑅𝜃,𝑚 =
cos𝑚𝜃 − sin𝑚𝜃
sin𝑚𝜃 cos𝑚𝜃

▪ The rotation increases with increasing 𝜃 and 𝑚. 𝒙 =
𝑎
𝑏

𝒙′ = 𝑎′
𝑏′

𝑥′ = 𝑅𝜃,𝑚𝑥

𝑚𝜃

Bonus
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Rotary Positional Encoding (RoPE)

RoFormer: Enhanced Transformer with Rotary Posit ion Embedding (2022) Figure source

▪ Drop the additive positional encoding and make 
it multiplicative. 

𝑞𝑘𝑚𝑛 = 𝑅𝜃,𝑚𝑊𝑞𝒙𝑚
𝑇
𝑅𝜃,𝑛𝑊𝑘𝒙𝑛

= 𝒙𝑚
𝑇 𝑊𝑞

𝑇𝑅𝜃,𝑚
𝑇 𝑅𝜃,𝑛𝑊𝑘𝒙𝒋

o 𝜃: the size of rotation

o 𝑅𝜃,𝑚: rotation matrix, rotates a vector it gets 
multiplied to proportional to 𝜃 and the 
position index 𝑚.  

▪ Intuition: nearby words have smaller relative 
rotation.

Bonus

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb
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Thinking About Rotation Matrix

▪ In practice, we are rotating 𝑑 dimensional embedding matrices. 

▪ Idea: rotate different dimensions with different angles: 

o Θ = {𝜃0, 𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑑/2}

Bonus
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RoPE in its General Form

𝑞𝑘𝑚𝑛 = 𝑅Θ,𝑚
𝑑 𝑊𝑞𝒙𝑚

𝑇
𝑅Θ,𝑚
𝑑 𝑊𝑘𝒙𝑛 ,

▪ where 𝑅Θ,𝑚
𝑑 is a 𝑑-dimensional rotation matrix. 

▪ Since 𝑅Θ,𝑚
𝑑 is a sparce matrix, its multiplication is implemented via dense operations:  

Bonus
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Implementation and code for RoPE

▪ Note: embedding at each attention operation to enforce position invariance

[Slide credit: Tatsu Hashimoto] 

Bonus
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Recap 

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation

▪ RoPE embeddings: uses rotations to encode relative distances. 

Notable models: 
Original Transformer 

Notable models: 
GPT1/2/3 - OPT

Notable models: 
T5, Gopher, 
Chinchilla, Deberta
Tranformer-XL, 

Notable models: 
GPTJ, PaLM, LLaMA
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Which overall architecture 
should I use? 
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Architectures: Different Choices

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus
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Architectures: Different Attention Masks 

▪ Fully visible mask allows the self attention mechanism to attend to the full input.

▪ A causal mask doesn’t allow output elements to look into the future.

▪ Causal mask with prefix allows to fully-visible masking on a portion of input.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus
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Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Input: Thank you for <X> me to your party
<Y>. Target: <X> inviting <Y> last week.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Number of 
parameters

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus



102

Architectural Variants: Experiments

Number of FLOPS

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus



103

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Language model is decoder-only

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

LM looks at both input and target, while 
encoder only looks at input sequence and 
decoder looks at output sequence.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

▪ Takeaways: 
1. Halving the number of layers in encoder and decoder hurts the performance.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Architectural Variants: Experiments

▪ Takeaways: 
1. Halving the number of layers in encoder and decoder hurts the performance.

2. Performance of Enc-Dec with shared params is almost on-par with prefix LM.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks. 

Bonus
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Overall architecture 
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Architecture Hyperparams

There are a ton of question regarding architecture hyperparameters: 

▪ How much bigger should the feedforward size be compared to hidden size?

▪ How many heads? Should # of heads always divide hidden size?

▪ Should we make our model wide or deep? 
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The Surprising Consensus #1: 
FFN Dimension Ratio 

▪ Feedforward – model dimension ratio:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑

▪ There are two dimensions that are relevant – the feedforward dim (𝑑ff) and model 
dim (𝑑). What should their relationship be?

𝑑ff = 4𝑑

▪ This is almost always true. There’s just a few exceptions.

[Slide credit: Tatsu Hashimoto] 
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Why this range of multipliers? 

▪ Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal.

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto] 

https://arxiv.org/pdf/2001.08361
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Exception #1 — GLU/Gated variants 

▪ Remember that GLU variants scale down by 2/3 rd. This means most GLU variants 

have 𝑑ff =
8

3
× 𝑑. This is mostly what happens. Some notable such examples:

▪ Models are roughly in this range, though PaLM, LLaMA2 and Mistral are slightly larger
[Slide credit: Tatsu Hashimoto] 

Bonus
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Exception #2 - T5 

▪ As we have (and will) see, most LMs have boring, conservative hyperparameters.

▪ One exception is T5 [Raffel et al 2020] which has some very bold settings.

▪ In particular, for the 11B model, they set

▪ For an astounding 64-times multiplier.

[Slide credit: Tatsu Hashimoto] 

𝑑ff = 65,536
𝑑 = 1024

Bonus
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The Surprising Consensus #2: 
Model Dimension Ratio 

▪ Remember: 

▪ The consensus: dim of head (
𝑑

ℎ
) x num-heads (ℎ) = model-dim (𝑑)

▪ This doesn’t have to be true: we can have head-dimensions > model-dim / num-
heads. The matrix (𝑾𝑂) can take care of projection to model-dim. 

o But most models do follow this guideline

[Slide credit: Tatsu Hashimoto] 

head𝑖 = Attention 𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣

MultiHeadedAttention 𝐱 = Concat head1, … , headℎ 𝑾𝑂

In practice, we use a reduced dimension for each head. 

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
ℎ, 𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
ℎ, 𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
ℎ, 𝑾𝑂 ∈ ℝ𝑑×𝑑
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Heads vs model dim 

▪ Some examples of this hyperparameter: 

▪ Most models have ratios around 1 – notable exceptions by some google models.

[Slide credit: Tatsu Hashimoto] 

ℎ 𝑑/ℎ 𝑑
num-heads x head-dim / model-dim
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Aspect radios 

▪ Should my model be deep or wide? How deep and how wide?

▪ Most models are surprisingly consistent on this one too!

▪ Note here width is the hidden dimension, not the context window width. [Slide credit: Tatsu Hashimoto] 

Bonus
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Considerations about aspect ratio

▪ Extremely deep models are harder to parallelize

[Slide credit: Tatsu Hashimoto] 
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Evidence on aspect ratio scaling 

[Kaplan et al 2020]

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto] 

Wide range of ‘good’ values (100-200)

https://arxiv.org/pdf/2001.08361
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Recap of architecture hyperparams

▪ Feedforward dimension / model dimension 

o Factor-of-4 rule of thumb (8/3 for GLUs) is standard (with some evidence)

▪ Head dim

o Head dim*Num head = D model is standard – but not much validation

▪ Aspect ratio

o Wide range of ‘good’ values (100-200). Systems concerns dictate the value.

[Slide credit: Tatsu Hashimoto] 
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Tokenizers 
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What Tokenizers do people use? 

▪ The non-google world uses BPE. Google uses the SentencePiece library, which 
(sometimes) refers to a non-BPE subword tokenizer

▪ Important property – all of these tokenizers are mostly*invertible.

o * except the ones that do lowercasing and aggressive normalization [Slide credit: Tatsu Hashimoto] 
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What are typical vocabulary sizes?

Monolingual models – 30-50k vocab Multilingual / production systems 100-250k

Monolingual vocabs don’t need to be huge, but multilingual ones do [Slide credit: Tatsu Hashimoto] 
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Dealing with white spaces 
Multi-whitespace 

tokenization (GPT-NeoX)

[Slide credit: Tatsu Hashimoto] 
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Dealing with numbers

https://www.artfish.ai/p/how-would-you-tokenize-or-break-down

Mixral, Llama, DeepSeek, and Gemma 
tokenizers broke down numerical sequences 
into a separate token for each digit.

GPT-4 and GPT-4o tokenizers broke down 
numerical sequences into groups of 3.
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Tokenizers 

▪ Everyone uses invertible subword tokenizers (BPE, Unigram) for good reason.

▪ For math and code, careful manual handling of whitespace and numbers can help.

[Slide credit: Tatsu Hashimoto] 
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Summary of LLM architectures 

▪ There are many architectural variations. 

▪ Major differences? Position embeddings, activations, tokenization

▪ This is an evolving field; a lot of empirical analysis is going into identifying best practices. 

[Picture credit: Tatsu Hashimoto] 
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Pre-training language models: 
Pre-training data
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The pre-training data size and sources

▪ They vary 
quite a bit! 

▪ They used to be 
in billions of tokens;
now they’re north 
of trillions. 



133

Where do we begin to collect data? 

▪ Where do I find a very large dataset? 

o Crawling web is non-trivial (unless you’re OpenAI or Google with ton of resources).

o But if you have to do it, be aware that websites have their own permissions 
regarding which parts of their content, if any, can be crawled. (next slide)

o The alternative is to look for websites that have done the crawling for you. 
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Robots.txt

▪ A plain text file that tells web crawlers which parts of a website they can access. 

▪ When a web crawler visits a website, it first checks the robots.txt file (if available) 
before crawling other pages.

▪ AI companies release the details of their crawlers: 
https://platform.openai.com/docs/bots/

https://github.com/ai-robots-txt/ai.robots.txt

More examples: 
https://www.youtube.com/robots.txt
https://www.jhu.edu/robots.txt

https://platform.openai.com/docs/bots/
https://github.com/ai-robots-txt/ai.robots.txt
https://www.youtube.com/robots.txt
https://www.jhu.edu/robots.txt
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Robots.txt’s are becoming 
increasingly more restrictive

▪ A longitudinal analyses show that in the past few years, a major chunk of websites 
have restricted their data to AI crawlers. 

Consent in Crisis: The Rapid Decline of the AI Data Commons, 2024

file:///Consent%20in%20Crisis/%20The%20Rapid%20Decline%20of%20the%20AI%20Data%20Commons,%202024
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CommonCrawl

▪ A non-profit organization that release a new crawl of the internet every month they.

o So far, there have been ~100 crawls from 2008-2024.

o In 2016, a crawl took 10-12 days on 100 machines. They used Apache Nutch. 

o This is not a complete of the internet. Crawls have some overlap but try to diversify.

• Common Crawl follows links from previously crawled pages.

o Also note, it respects robots.txt

▪ CC is a common sources of pre-training data. 

o WARC: The raw HTTP responses, including 
full web pages.

o WAT: The metadata summary from WARC files.

o WET: The extracted plaintext from WARC files, 
stripping out HTML and other non-textual content.

https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html
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CC is messy. Is that a concern? 



Besides quantity, the choice of dataset is also critical

[Slide credit: Samet Samik] 
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C4: A cleaned up pre-training dataset

▪ C4: Colossal Clean Crawled Corpus 

o The course is CommonCrawl. 

o English language only 

o 750GB after ton of filtering

▪ Notice that the unfiltered data is quite large. 

o Common Crawl is mostly not useful natural language

Play with the data: https://c4-search.apps.allenai.org/

https://c4-search.apps.allenai.org/
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C4: The Data

Slide adapted from Colin Raffel

Remove any: 
• References to Javascript
• Pages with ”{“ (no code), “Lorem ipsum” 

text (dummy text), “terms of use”, etc.  
• Pages with ”bad words”. 

Retain: 
• Sentences with terminal 

punctuation marks 
• Pages with at least 5 sentences, 

sentences with at least 3 words 

https://www.lipsum.com/
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en
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Pre-training Data: Experiment 

▪ Takeaway: 

o Clean and compact data is better than large, but noisy data. 

o Pre-training on in-domain data helps. 

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020
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Does it matter that my 
data has ton of repetitions? 
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Pre-training Data Duplicates 

▪ There is a non-negligible number of  duplicates in any pre-training data. 

Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022
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Pre-training Data Duplicates 

▪ There is a non-negligible number of duplicates in any pre-training data. 

▪ Maybe we should not spend our training budget re-learning things we have already seen. 

Deduplicating Training Data Makes Language Models Better, 2020



145

Deduplicating Data Improves LMs

▪ Models: GPT-2-like (1.5B param) models 

▪ On there datasets: 

o C4 : the original training data

o C4-NearDup: C4 excluding exact duplicates 

o C4-ExactSubs: C4 excluding 
near-duplicates 

Deduplicating Training Data Makes Language Models Better, 2020

Training on deduplicated data 
always leads to lower PPL! 

Except when evaluated on 
duplicate evaluation data! 
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Deduplicating Data Improves LMs

▪ Another evidence from Gopher paper: Performance of 1.4B parameter models (lower 
is better) trained on OpenWebText, C4, and versions of MassiveWeb with 
progressively more pre-processing stages added. 

▪ Applying a quality filter and de-duplication stages significantly improves quality.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2022

https://arxiv.org/pdf/2112.11446
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How can I do my own 
deduplication? 
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How do you scale data deduplication? 

▪ Pre-training is huge. Naively deduplicating the data is going to take forever!! 

▪ How do you deduplicate it? Here are a few options: 

o SuffixArray

o MinHash

o BloomFilters

o Embedding-based dedup
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The simplest: hashing documents

▪ Hash all documents, so each document receives one unique hash. 

▪ Efficiency: This will be fast. 

▪ Granularity: 

o This will be sensitive to small changes; any change in the document (e.g., one 
word change) would change its hash.

o Also, we’re deduplicating full documents. 

▪ Different choices of hashing functions (trade off between efficiency vs collision):

o Collison: h(x) = h(y), if x!=y. 

o Cryptographic hashing (SHA-256, SHA-3, BLAKE2); collision resistant but slow. 

o DJB2, MurmurHash, CityHash: Not collision resistant but fast. 

Bonus
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What are Suffix Arrays? 

▪ A common approach is using Suffix arrays — A suffix array for a string T (of length m) 
is an array of integers [0, m) that correspond to suffixes of T $, stored in sorted order.

o Example: T = “abaaba$”

▪ Space complexity: 

o O(m)
0 abaaba$

1 baaba$

2 aaba$

3 aba$

4 ba$

6 a$

7 $

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Sort suffixes 
lexicographically

Now you can 
drop the strings

6

5

2

3

0

4

1

Suffix arrays: a new method for on-line string searches, 1993

Bonus

https://epubs.siam.org/doi/abs/10.1137/0222058
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What are Suffix Arrays? 

▪ A common approach is using Suffix arrays — A suffix array for a string T (of length m) 
is an array of integers [0, m) that correspond to suffixes of T $, stored in sorted order.

o Example: T = “abaaba$”

▪ Space complexity: 

o O(m)

▪ You don’t need the suffixes since, given their index, you can look them up from T. 

0 abaaba$

1 baaba$

2 aaba$

3 aba$

4 ba$

6 a$

7 $

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Sort suffixes 
lexicographically

Now you can 
drop the strings

6

5

2

3

0

4

1

Bonus
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Suffix arrays: querying

▪ Querying: Is P a substring of T? 

▪ Two crucial observations: 

1. For P to be a substring, it must be a prefix of ≥1 of T’s suffixes.

2. Suffixes sharing a prefix are consecutive in the suffix array.

▪ Example: Given SA of T = “abaaba$” 
find the indices (if any) of substring P = “aba”. 

▪ In practice, we can use binary search to to check 
whether P is a prefix of any suffix. 

▪ Complexity: O(n log m) 

o for m = len(T) and n = len(P)

o See an example here. 

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Now you can 
drop the strings

6

5

2

3

0

4

1

Bonus

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_10_suffix_arrays_2.pdf
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LCS with SuffixArrays

▪ Suffix arrays also allows us to quickly check overlap between pairs of documents. 

▪ Querying: Given SA of T, what is its Longest Common Subsequence (LCS) with P? 

▪ This can also be done with binary search O(n log m) for m = len(T) and n = len(P).

▪ See an example here. 

Find more about these algorithms in Ben Langmead’s course: https://www.langmead-lab.org/teaching.html

Bonus

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_20_suffix_arrays_4.pdf
https://www.langmead-lab.org/teaching.html
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Deduplication with Suffix Arrays

▪ Concatenating all text in the corpus together and then sorting each suffix. 

▪ By scanning this sorted list, substrings with a common prefix can by identified by 
scanning the prefices of neighboring elements in the sorted list. 

▪ This latter step can be done in an embarrassingly parallel fashion.

▪ Granularity: 

o Note SAs can only do exact deduplication! 

o But it can allow you to do deduplication on substrings/sub-documents. 

▪ Hyperparameter: the length of overlap 

o Lee at al. deduplicated substrings that are at least 50 tokens long. 

See example here: https://github.com/google-research/deduplicate-text-datasets/blob/master/README.md
Uses MinHash: Lee at al. Deduplicating Training Data Makes Language Models Better, 2020

Bonus

https://github.com/google-research/deduplicate-text-datasets/blob/master/README.md
https://arxiv.org/abs/2107.06499


155

Deduplication with MinHash

▪ MinHash is a locality-sensitive hashing technique used to group sets into collections 
based on their Jaccard similarity. 

o Note, unlike SuffixArrays, MinHash can do “fuzzy” deduplication! 

o Hyperparameters: the n-gram-size, and the number of permutations used. 

o Lee et al used: 

• n-gram-size of 5 tokens and Jaccard sim < 0.8; 

• 9K permutations, split into 450 buckets of 20 hashes each. 

o Li et al. used: 1,395 permutations, split into 93 buckets of size 15.

Uses MinHash: Lee at al. Deduplicating Training Data Makes Language Models Better, 2020
Uses MinHash: Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Also see: https://blog.nelhage.com/post/fuzzy-dedup/

Bonus

https://arxiv.org/abs/2107.06499
https://arxiv.org/pdf/2406.11794
https://blog.nelhage.com/post/fuzzy-dedup/
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▪ Bloom filters are a data structure that enable space-efficient set membership queries.

o A Bloom filter maintains a sketch of a set (in sublinear space) that supports an 

• insert operation, 

• a probabilistic membership_query operation. 
• Note: The latter operation has no false negatives (i.e., return False for an element in the set), 

but it may occasionally return a false positive (i.e., return True for an element not in the set).

▪ Efficiency: Li et al. say that BF is “vastly more efficient than a MinhHash and SuffixArrays.”

▪ Granularity:

o Can be used for both exact dedup (like Sondaini et al) and ”fuzzy” dedup!

o Caveat: MinHash performs doc-level deduplication at a document vs. document level, 
whereas BFF performs document-level deduplication at a document vs. corpus level.

▪ Hyperparams: Number of hashers which determines the false positive rate.

Deduplication with BloomFilters

BloomFilters: Space/time trade-offs in hash coding with allowable errors, 1970

Uses BloomFilter: Soldaini at al. Dolma: An open corpus of three trillion tokens for language model pretraining research, 2024 https://github.com/allenai/bff

Bonus

https://dl.acm.org/doi/abs/10.1145/362686.362692
https://arxiv.org/abs/2402.00159
https://github.com/allenai/bff
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Comparison between dedup algorithms

▪ Single methods: BF better than any other method standalone. 

▪ Combination: The competitive approaches are last row (exact -> MH -> SA) and BF-
only. The former leads to more compact data. 

Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Individual 
technique

Combined 
techniques

https://arxiv.org/pdf/2406.11794
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Deduplication in embedding space 

▪ D4 performs dedup in embedding space of sentences by a pre-trained sentence embedder: 

o (1) deduplication: drop data points in epsilon-ball around each data point.

o (2) diversification: k-means to cluster points and drop those far from centroids

▪ Does it work? 

o Yes, it gives 22% training speedup over baseline (random selection). 

o Is it better than MinHash? Depends 

D4: Improving LLM Pretraining via Document De-Duplication and Diversification, 2024 

Number of Tokens Seenselection ratio

Bonus

d4:%20Improving%20LLM%20Pretraining%20via%20Document%20De-Duplication%20and%20Diversification,%202024
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Deduplication: Recap 

▪ Does it matter that my data has ton of repetitions? Yes, one should do careful dedup.

▪ How can I do my own deduplication? 

o Scaling it up requires advanced data structures. 

o So far, there is no clear winner between these algorithms. A “kitchen sink” approach 
that mixes dedup algorithms is generally best, but it’s an empirical exercise. 

o BF is generally preferred since it’s cheaper/faster. 
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Should I worry about old data 
in my pre-training? 
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Prevalence of stale data 

▪ Breakdown of old versions of Wikipedia in RedPejamas

▪ RedPejamas which is based on dumps from C4, CC and a recent Wikipedia dump. 

▪ The bars blow show the breakdown of older versions of Wikipedia in RedPajamas. 

o There is a ton of old Wikipedia versions in RedPejamas! 

▪ The solid trend is the perplexity of a pre-trained model on temporal instances of Wikipedia. 

o The significant stale training data in has skewed PPL toward older versions of Wikpedia. 

Dated Data: Tracing Knowledge Cutoffs in Large Language Models, 2024

Bonus

https://arxiv.org/abs/2403.12958
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Should I worry about skew of 
the data mixtures in my pre-training? 
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Data Mixtures 

▪ Your dataset mixture will determine the versatility of the resulting model. 

▪ Data in the world is always skewed. For example, 

o English has a lot more language than other domains. 

o Reddit is a lot larger than science papers.

▪ A uniform ”weight” of data during pre-training is not good since overrepresented 
domains would dominate (e.g., your model would be a better at English than Azeri).

▪ Overamplifying underrepresented domains also runs risk of overfitting. 

▪ So, there is a lot of research on finding good balance.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429
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Language filtering

▪ Many works limit their data to English. 

▪ Chinese models (e.g., Qwen and DeepSeek) are mostly English + Chinese. 

▪ The issue is the difficulty curating high-quality data. Also cost training on more data.

▪ GPT-4, Claude, Gemini are all multilingual. 

▪ How do people identify languages? A popular choice is fastText which supports 176 langs. 

▪ Danger in English-only filtering: 

o accidentally filtering out dialect of English. 

o Ill-defined for code-switching (e.g., English + Chinese).  

Bonus

https://fasttext.cc/docs/en/language-identification.html
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Few notable data pipelines
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Starts with the massive crawled data by CommonCrawl. 

The WET format that contains textual information. 
WARC is raw, WAT is metadata, WET is text+some metadata.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB). 

Then you normalize paragraphs (lowercasing, numbers as placeholders, etc), 
compute per-paragraph hashes and then duplicate them.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Perform language identification and decide whether to keep or discard languages.

The order of when you do this in the pipeline can impact the language discrimination quality. 

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19
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LLaMA 1’s Data Pipeline 

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019

Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia, 

then compute per-paragraph perplexity on the rest of the data: 
• Very high PPL: Very different than Wiki and likely low-quality → Drop 

• Very low PPL: Very similar or near duplicates to Wiki → Drop 
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DataDecomp-LM filtering pipeline

DataComp-LM: In search of the next generation of training sets for language models, 2024
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Few cleaned-up pre-training datasets

Dataset Example 
models

Tokens Source License Lang

C4 
(Raffel et al. 2020)

T5 165B CC ODC-BY English

The Pile 
(Gao el al. 2020)

GPT-J, Pythia 300B 22 datasets including CC, 
books, code, news

Varies by dataset subset English

RedPejamas
(Weber et al. 2024)

Llama 1 1.2T CC, C4, Github, Arxiv, Books, 
Wikipedia, StackExchange

Varies by dataset subset English

RefinedWeb
(Penedo et al. 2023)

Falcon 600B CC ODC-BY 1.0 English

Dolma
(Soldaini et al. 2024)

OLMo 3T CC, C4, Gutenberg, Github, 
Wikipedia, Wikibooks

ImpACT MR English

DataComp-LM
(Li et al. 2024)

SmolLM2, 
DCLM 

240T CC ? English

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2406.11794
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The Pile 

▪ Pile-CC: From Common Crawl; uses justText to extract useful text.

▪ PubMed Central: 5M NIH funded papers and public. 

▪ arXiv: preprint for research papers since 1991 (uses latex).

▪ Gutenberg PG-19: Online books (before 2019) with copyright clearance.  

▪ Books3 is a a collection of ~200K books. Has been subject of lawsuits.

▪ StackExachange: Q&A format is close to real applications.

▪ Github: Content is not just the code. 

o Note, GH archive has regular snapshots of Github (commits, forks, etc.)

Slide inspiration: Percy LiangThe Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020

https://github.com/miso-belica/jusText
https://github.com/google-deepmind/pg19
https://huggingface.co/datasets/defunct-datasets/the_pile_books3
https://www.wired.com/story/battle-over-books3/
https://www.gharchive.org/
https://arxiv.org/abs/2101.00027
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Summary: preparing pre-training data

▪ Data does not fall from the sky. You have to work to get it! 

▪ Finding large data: CommonCrawl has a ton of crawled dumps, but not the only one. 

▪ Cleaning data can save tons of compute and even give you gains.

▪ Repetitions are often a waste of compute and deteriorate model quality. 

▪ Scaling deduplication requires advanced data structures. 

▪ Old data old data may skew your model predictions, but it depends on your application.

▪ Data mixtures are quite important, though depend on your downstream application. 
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Pre-training language models: 
The actual training



175

What pre-training objectives 
should I use? 

Bonus
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On Pre-training Objectives

▪ So far, the dominant objective we have seen is “next-token” prediction. 

▪ In reality any “marginal” observations about language can be a source of 
supervision. 

Bonus
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Objectives

▪ Prefix language modeling 
o Input: Thank you for inviting 

o Output: me to your party last week 

▪ BERT-style denoising
o Input: Thank you <M> <M> me to your party 

apple week 

o Output: Thank you for inviting me to your 
party last week 

▪ Deshuffling
o Input: party me for your to. last fun you 

inviting week Thanks. 
o Output: Thank you for inviting me to your 

party last week 

● IID noise, replace spans 
○ Input: Thank you <X> me to your party <X> week 

○ Output: <X> for inviting <Y> last <Z>

● IID noise, drop tokens  
○ Input: Thank you me to your party week .

○ Output: for inviting last

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus
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Objectives: Experiments 

▪ All the variants perform similarly

▪ “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because 
target sequences are shorter, speeding up training.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Assuming Enc-Dec architecture. 

Evaluated for classification tasks. 

Bonus
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How should we select the 
right hyperparams? 
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IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex 
combination of many factors. 

▪ Goal: find the best combinations, for a fixed compute. 

▪ It’s good to change various parameter (e.g., training 
data, size, or other hyperparams) and see how it’s 
quality changes.  
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How should I 
train the model? 
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Optimizers 

▪ Most modern models use “AdamW” optimizer (not vanilla Gradient Descent). 

o Adam optimization is a stochastic gradient descent method that is based on 
adaptive estimation of first-order and second-order “momentums”.

o “W” because it decouples “weight decay”
from “learning rate”. (Details out of scope 
for us. See the cited paper.) 

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

[Decoupled Weight Decay Regularization, 2017] 

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Batching Data

▪ Previously we talked about the 
importance of batching data 

▪ GPUs are faster at Tensor operations and 
hence, we want to do batch processing 

▪ The lager batch of data, the faster they 
get processed. 

▪ Alas, the speedup is often sub-linear 
(e.g., 2x larger batch leads to less than 
2x speedup). 

Model: 13B LLaMA on A100 GPU

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023
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Batch sizes: some known statistics 

An Empirical Model of Large-Batch Training, 2018

LLaMA: Open and Efficient Foundation Language Models, 2023

The Llama 3 Herd of Models, 2024

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024

https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04434
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Can I fit this model in which GPU?

▪ One of the followings: 

o You have a model a model and want to find the right GPU for it. 

o You have a GPU and want to find the largest model to fit in. 

▪ What should we do? 

o The memory taken up by a model depends on: 

• Model parameters 

• Activations: notice that these increase with larger batch and seq length

• Gradients (of training) 



186

The Memory Usage 

▪ Here is the memory usage of an NVIDIA A100 when serving (i.e., no training) 

o Model: 13B LLaMA

o Batch size of 10

▪ ~65% of your GPU memory is 
the model parameters that never change

▪ ~32% of your memory are KV tensors that
change for each input. 

o This KV cache will increase for larger batch sizes. 

o Managing this part of the memory is key for 
efficient training. 

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023
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How many parameters does my 
Transformer have? 

▪ Let’s count the number of parameters: 

▪ The self-attention block params: 

o 3 × 𝑑 ×
𝑑

𝑚
× 𝑚 + 𝑑2 = 4𝑑2

▪ The FFN block params: 

o 2 × 𝑑 × 𝑑ff

▪ So, in total: 4𝑑2 + 2𝑑𝑑ff

▪ The ratio of SA/FFN parameters is 
2𝑑

𝑑ff
and 𝑑ff is usually 2-4 larger than 𝑑.

▪ In most models, roughly 2/3 of transformer parameters are feedforward blocks

▪ Notice that the num of params in independent of seq length (𝑛) or batch size (𝑏)! 

o So, in theory you should be able to run your SA on sequences of any length! 

• (but would it work on longer sequences? -- more on this later)

𝑚: number of heads

𝑑: feature dimension in output of SA

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚,𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
𝑚,𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
𝑚,𝑾𝑂 ∈ ℝ𝑑×𝑑

head𝑖 ← Attention 𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣

𝐱 ← MHAttention 𝐱 = Concat head1, … , headℎ 𝑾𝑂

𝐱 ← 𝑓 𝐱𝑊1 + 𝑏1 𝑊2 + 𝑏2
𝑾1 ∈ ℝ𝑑×𝑑ff ,𝑾2 ∈ ℝ𝑑ff×𝑑

(note, not showing layer-norm and residuals)

Bonus
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Dropout and other regularization

▪ Do we need regularization during pretraining?

▪ Arguments against:

o There is a lot of data (trillions of tokens), more than parameters.

o SGD only does a single pass on a corpus (hard to memorize)

▪ This is all quite reasonable.. but what do people do in practice?

[Slide credit: Tatsu Hashimoto] 
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Dropout and weight decay in practice

Many older models used 
dropout during pretraining

Newer models (except 
Qwen) rely only on weight 
decay

* Most of the times papers just don’t discuss dropout. On open models, this closely 

matches not doing dropout. This may not be true of closed models.
[Slide credit: Tatsu Hashimoto] 
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Why weight decay LLMs?

▪ [Andriushchenko et al 2023] has interesting observations about LLM weight decay

It’s not to control overfitting Weight decay interacts with learning rates (cosine schedule)

[Slide credit: Tatsu Hashimoto] 
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Convergence 

▪ In practice, your model’s loss should continue 
to go down with more training on more data. 

▪ So, the real bottlenecks are: 

o (1) compute

o (2) data

▪ Sometimes training diverges (spikes in the 
loss), at which point practitioners usually 
restart training from an earlier checkpoint. 
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Staged pre-training 

▪ Few models do staged pre-training (e.g., llama3). 

1. Start with pre-training indiscriminative on all sorts of data (including short data). 

2. Do continued pre-training on long text. 

3. Annealing (learning rate going to zero) 

Bonus
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Recap of training LLMs

▪ IsoPlots: for a fixed compute, which combination of parameters give you the best 
bang for the buck. 

▪ Careful batching makes your training go brrr! 

▪ Memory usage can be tricky since there are various moving parts. 

o More on distributed training later on. 

▪ Dropout is less common but you still ‘regularize’ LMs via large-scale training. 
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Mixture of Experts (MoE)

Slide credit to Tatsu Hashimoto and Samet Oymak
for earlier versions of these slides. 
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Mixture of Experts (MoE)

[Slide credit: Tatsu Hashimoto] 
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Mixture of Experts (MoE)

▪ Two main elements (NNs): 

o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.

o A gate networking/router: It determines which tokens are sent to which experts.

▪ You can increase the # experts without affecting FLOPs

[A Review of Sparse Expert Models in Deep Learning, 2022] 

https://arxiv.org/abs/2209.01667
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Why are MoE’s getting popular? 

▪ Same FLOP, more param does better

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022] 

https://arxiv.org/pdf/2101.03961
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Why are MoE’s getting popular? 

▪ Faster training over a dense 
(non-MOE) model

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022] 

https://arxiv.org/pdf/2101.03961
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Why are MoE’s getting popular? 

▪ Have faster inference compared to 
the dense models of the same size 
model
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Why are MoE’s getting popular? 

▪ Parallelizable to many devices
(more on this in a bit) 

▪ MoEs parallelize nicely 
since each FFN (expert) can 
fit in a device.

[Slide credit: Tatsu Hashimoto] 
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MoE variants

Typical: replace MLP with MoE layer Less common: MoE for attention heads

[ModuleFormer, JetMoE]
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Top-k routing, intuitively

▪ Most models use the class top-k routing which involves 3 steps: 

o (1) Scoring: Produces a distribution 
over the experts.  

o (2) Routing: identify the set of top-k 
experts and assign their scores: 

o (3) weighted sum among top-k: 
creates weighted average of experts 
summed with the residuals. 
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Top-k routing, in detail 

▪ Most models use the class top-k routing which involves 3 steps: 

o (1) Scoring: Suppose the input feature (the input to MoE layer) is 𝒙. 
The gates are selected by a logistic regression (i.e., linear scoring + softmax) 
which produces a distribution over the experts.  

𝒔 = Softmax(𝒙𝑊𝑟) where 𝑊𝑟 are the trainable params

o (2) Routing: identify the set of top-k experts and assign their scores: 

𝑔𝑖 = ቊ
𝑠𝑖 𝑠𝑖 ∈ TopK 𝑠𝑗 1 ≤ 𝑗 ≤ 𝑁 ,𝐾)

0 𝑜. 𝑤.

o (3) weighted sum among top-k: 

𝒚 = ෍

𝑖

𝑔𝑖 𝐹𝐹𝑁𝑖(𝒙) + 𝒙

This is how DeepSeek and 
Grok implement MoE layer.

Mixtral and DBRX
softmax after the TopK
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Recent variations: shared experts

▪ Smaller, larger number of experts + a few shared experts that are always on.

▪ The idea is to have induce more complementarity among experts, by having a shared 
expert that takes the care of easy/common skills. 

Used in 
DeepSeek / Qwen

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

https://arxiv.org/abs/2401.06066


205

Various ablations from the DeepSeek paper

▪ More experts, shared experts all seem to generally help

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

https://arxiv.org/abs/2401.06066
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Why haven’t MoEs been more popular?

▪ Infrastructure is complex / advantages on multi node.

[A Review of Sparse Expert Models in Deep Learning, 2022] 

https://arxiv.org/abs/2209.01667
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Why haven’t MoEs been more popular?

▪ Training stability: Because of the discrete nature of MoE’s decisions, small changes in router 
weights can have disproportionate effect in the outcomes. 

o One solution is adding stochasticity during training to encourage exploration. 

▪ Redundancy and hybridity: There is a tendency for multiple experts to converge in learning 
similar information. This dilutes the specialization of experts and results in overlapping 
knowledge domains and inefficient use of parameters. 

o One solution is using shared experts (used by DeepSeek). 

▪ Load balancing: The imbalance calls to few few popular experts makes MoE inefficient. During 
training, the gating network may converge to few experts which may continue to self-reinforce as 
favored experts are trained quicker and hence selected more. 

o One common solution is using an auxiliary loss to encourage giving all experts equal 
importance. 

▪ Complex infrastructure: Often you need a lot of a lot of GPU memory to fit your model and 
run it efficiently.

o A lot to discuss on this but beyond the scope of our class.   

[A Review of Sparse Expert Models in Deep Learning, 2022] 

https://arxiv.org/abs/2209.01667
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Side issue – stochasticity of MoE models

▪ There was speculation that GPT-4’s stochasticity was due to MoE.

▪ Why would a MoE have additional randomness?

▪ Token dropping from routing happens at a batch level – this means that other 
people’s queries can drop your token! [Slide credit: Tatsu Hashimoto] 
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Summary 

▪ MoEs take advantage of sparsity – not all inputs need the full model

▪ Discrete routing is hard, but top-k heuristics seem to work

▪ Lots of empirical evidence now that MoEs work, and are cost-effective
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Bonus content on MoE
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Mixture of Experts (MoE)

▪ Two main elements (NNs): 

o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.

o A gate networking/router: It determines which tokens are sent to which experts.

▪ You can increase the # experts without affecting FLOPs

[A Review of Sparse Expert Models in Deep Learning, 2022] 

Bonus

https://arxiv.org/abs/2209.01667
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MoE variants

▪ Routing function

▪ Expert sizes

▪ Training objectives

Bonus
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Variations of routing function 

▪ Observation: choosing experts based on the input usually entails a discrete selection 
(i.e. which expert to use), which complicates backprop relying on differentiability.

▪ The pioneering work of Shazeer et al. 2017 formulated routed function that was 
adopted and adapted by many follow-on works. Here is how it worked: 

1. Top-𝑘 routing function which takes as an input a token representation 𝒙,

2. Then routes it to the top-𝑘 experts out of the set 𝑁 experts.

[Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017] 

Bonus

https://arxiv.org/abs/1701.06538
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Routing function 

▪ Many of the routing algorithms boil down to “choose top k”

[A Review of Sparse Expert Models in Deep Learning, 2022] 

Each token 

chooses top-k 
expert

Each expert 

chooses top-k 
token

Global routing 

tokens should go to 
which experts 

Bonus

https://arxiv.org/abs/2209.01667
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Common routing variants

▪ Used in most MoEs

o Switch Transformer (k=1)

o Gshard (k=2), Grok (2), 

o Mixtral (2), Qwen (4), 

o DBRX (4), DeepSeek (7)

▪ Common baseline

[Slide credit: Tatsu Hashimoto] 

[A Review of Sparse Expert Models in Deep Learning, 2022] 

Bonus

https://arxiv.org/abs/2209.01667
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Other routing variants

▪ RL to learn routes

o Used in some of the earliest work 
Bengio 2013, not common now

▪ Solve a matching problem

o Linear assignment for routing 

o Used in various papers like Clark ‘22

[A Review of Sparse Expert Models in Deep Learning, 2022] 

https://arxiv.org/abs/2209.01667
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Some recent MoE results 

▪ MoEs are most of the highest-performance open models and are quite quick.

Bonus
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Some recent MoE results – Qwen
Bonus
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Some recent MoE results – DeepSeek

▪ There’s also some good recent 
ablation work on MoEs showing 
they’re generally good.

[Slide credit: Tatsu Hashimoto] 

Bonus
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How do we train MoEs?

▪ Major challenge: we need sparsity for training-time efficiency...

o But sparse gating decisions are not differentiable!

▪ Solutions?

1. Reinforcement learning to optimize gating policies

2. Stochastic perturbations

3. Heuristic ‘balancing’ losses.

Guess which one people use in practice?

[Slide credit: Tatsu Hashimoto] 

Bonus
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How do we train MoEs?

▪ RL via REINFORCE does work, but not so much better that it’s a clear win

▪ RL is the ‘right solution’ but gradient variances and complexity means it’s not widely used.

(REINFORCE baseline approach, Clark et al 2020)

[Slide credit: Tatsu Hashimoto] 

Bonus



222

Stochastic approximation

▪ From Shazeer et al 2017 – routing decisions are stochastic with gaussian perturbations.

o This naturally leads to experts that are a bit more robust.

o The softmax means that the model learns how to rank K experts

[Slide credit: Tatsu Hashimoto] 

[Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017] 

Bonus

https://arxiv.org/abs/1701.06538
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Stochastic approximation

▪ Stochastic jitter in Fedus et al 2022. This does a uniform multiplicative perturbation for the
same goal of getting less brittle experts. This was later removed in Zoph et al 2022

[Slide credit: Tatsu Hashimoto] 

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022] 

Bonus

https://arxiv.org/pdf/2101.03961


224

Load balancing losses

▪ A key issue regarding systems efficiency: using the experts evenly.

▪ Define an auxiliary loss and add it the total model loss during training.

[Slide credit: Tatsu Hashimoto] 

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022] 

So if an expert gets triggered or 
get assigned higher probability, 

downweight their share

Bonus

https://arxiv.org/pdf/2101.03961
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Recent Extensions of Load Balancing 

▪ Per-expert balancing – same as the switch transformer

▪ Per-device balancing – the objective above, but aggregated by device.

[Slide credit: Tatsu Hashimoto] 

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

Bonus

https://arxiv.org/abs/2401.06066
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Training MoEs – the systems side

▪ MoE routing allows for parallelism, but also some complexities

▪ Modern libraries like MegaBlocks (used in many open MoEs) use smarter sparse MMs

[Slide credit: Tatsu Hashimoto] 

Bonus
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Training MoEs – the systems side

▪ Enables additional kinds of parallelism

[Slide credit: Tatsu Hashimoto] 

[A Review of Sparse Expert Models in Deep Learning, 2022] 

Bonus

https://arxiv.org/abs/2209.01667
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Side issue – stability 

▪ Solution: Use Float 32 just for the expert router (sometimes with an aux loss)

[Zoph et al 2022]

[Slide credit: Tatsu Hashimoto] 

Bonus
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Issues with MoEs — fine-tuning 

▪ Sparse MoEs can overfit 
on smaller fine-tuning data

▪ Zoph et al solution – finetune 
non-MoE MLPs

▪ DeepSeek solution – use 
lots of data 1.4M SFT [Slide credit: Tatsu Hashimoto] 

Bonus
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Other training methods — Upcycling 

▪ Can we use a pre-trained LM to initialize a MoE?

[Slide credit: Tatsu Hashimoto] 

Bonus
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Upcycling example - MiniCPM

▪ Uses the MiniCPM model (topk=2, 8 experts, ~ 4B active params).

▪ Simple MoE, shows gains from the base model with ~ 520B tokens for training

[Slide credit: Tatsu Hashimoto] 

Bonus
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Upcycling example – Qwen MoE

▪ Qwen MoE – Initialized from the Qwen 1.8B model top-k=4, 60 experts w/ 4 shared.

▪ Similar architecture / setup to DeepSeekMoE, but one of the first (confirmed) 
upcycling successes

[Slide credit: Tatsu Hashimoto] 

Bonus
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Upcycling example (?) Mixtral

▪ Some people think Mixtral may also be upcycled

▪ but since Mixtral is only open weights (no open training code) we don’t really know ..

[Source: https://twitter.com/tianle_cai/status/1734188749117153684][Slide credit: Tatsu Hashimoto] 

Bonus

https://twitter.com/tianle_cai/status/1734188749117153684
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Why haven’t MoEs been more popular?

▪ Training objectives are somewhat heuristic (and sometimes unstable):

[Zoph et al 2022]

[Slide credit: Tatsu Hashimoto] 

Bonus
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