
Transformer Language Models

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

Transformers: Recap

After Transformer …

Yang et al. Harnessing the Power of

LLMs in Practice: A Survey on

ChatGPT and Beyond, 2023

5

The Phases of Our Understanding

“Language modeling is a useful subtask for many NLP tasks”
– everyone, pre-2018

“Language modeling is a useful supertask for many NLP tasks”
– everyone, post-2018

6

Chapter Plan

1. Transformer-based families of Language Models

2. Architectural variants

3. Thinking about pre-training data

4. Practical hacks and variants

Chapter goal — extending out understanding of training transformer language
models.

7

Transformer
Language Model Families

8

Impact of Transformers

▪ A building block for a variety of LMs

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, LaMDA

❖ Other name: causal or auto-regressive language model

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?

9

Encoder-Decoder Family of
Transformers

Encoder-

Decoders

10

Encoder-Decoder models: T5

▪ Architecture:

o The encoder portion benefits from bidirectional context.

o The decoder portion is used to train the whole model
through language modeling.

o Similar to the original Transformer enc-dec architecture.

11

Encoder-Decoder models: T5

▪ Pretraining objective: Randomly corrupt tokens and replace with sentinel tokens
(<x>, <y>) that is unique over the example.

12

Encoder-Decoder models: T5

13

Recap: Enc-dec models

▪ The most canonical form of Transformers.

▪ Notable example: T5.

14

Encoder-only Family of Transformers

15

Encoder-only models (BERT)

▪ Transformer encoder-only

▪ BERT is trained to uncover masked tokens.

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

brown 0.92
lazy 0.05

playful 0.03

https://arxiv.org/abs/1810.04805

16

Encoder-only models (BERT):
Probing its predictions

▪ Masking words forces BERT to use context in both directions to predict the masked
word.

https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

17

Encoder-only models (BERT):
Probing its predictions

▪ Masking words forces BERT to use context in both directions to predict the masked
word.

https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

18

Encoder-only models (BERT):
Pre-training Objectives

▪ Token masking: Randomly mask 15% of tokens and train the model to recover them.

19

Encoder-only models (BERT):
Pre-training Objectives

▪ Token masking: Randomly mask 15% of tokens and train the model to recover them.

o Too little masking: Too expensive to train

o Too much masking: Underdefined

• (not enough info for the model to recover the masked tokens)

▪ Sentence ordering: Predict sentence ordering

o Learns the relationships between sentences

o 50% correct ordering, and 50% random incorrect ones

20

Encoder-only models (BERT):
Fine-tune for tasks

o Idea: Make pre-trained model usable in downstream tasks (often classification)

o Initialized with pre-trained model parameters

o Fine-tune model parameters using labeled data from downstream tasks

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805

21

Encoder-only models (BERT): One of the
Early Signs on the Effectiveness of Scale

▪ Going from 110M -> 340M params helps a lot

▪ Improvements have not plateaued!

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

22

Encoder-only models (ModernBERT):
Recent Reincarnation of BERT

▪ Essentially a BERT-like architecture but a few key changes:

o Longer context: Trained for context window of 8,192 tokens (vs. 512 in BERT)

o MLP layer: Drop the bias term to save costs.

o More norms: Add an extra normalization layer after embeddings.

o Replaced activations: Replaced GeLU activation with GeGLU (will talk about this)

o Pos encoding: Replaced the sine/cosine with rotary embeddings (will talk about this)

[Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference, 2024]
https://huggingface.co/blog/modernbert

https://arxiv.org/abs/2412.13663
https://huggingface.co/blog/modernbert

23

Recap: Encoder-only models

▪ Transformer-based decoder-only models trained on massive piles of data.

▪ Common use-cases:

o Provide incredible framework contextualized embeddings of words.

o It also allows fine-tuning on your particular task (usually top layers).

▪ However, they were not designed to generate text – unless you do
additional work.

24

Decoder-only Family of Transformers

Decoders

25

Decoder-only (GPT)

▪ Generate sequences where each token is predicted based on the previously
generated tokens

▪ Use causal masking to ensure the causality

▪ Trained to maximize log-likelihood defined for next-token prediction.

Figure source: https://peterbloem.nl/blog/transformers

https://peterbloem.nl/blog/transformers

26

GPT4

▪ Transformer-based

o The rest is …. mystery! ☺

o Rumor: GPT-4 is a Mixture of Experts model (we’ll talk about it).

o If we’re going based on costs, GPT4 is ~15-30 times costlier than GPT3. That
should give you an idea how its likely size!

▪ Note, these language models involve more than just pre-training.

o Pre-training provides the foundation based on which we build the model.

o We will discuss the later stages (i.e., alignment) in a 2-3 weeks.

https://openai.com/pricing

https://openai.com/pricing

27

Other Available [Decoder] LMs

EleutherAI: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B)

https://huggingface.co/EleutherAI

https://6b.eleuther.ai/

LLaMA, 65B: https://github.com/facebookresearch/llama

Mistral and Mixtral:

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

28

Summary: Existing models

▪ There is a ton of models out there.

▪ We talked about a few: BERT, T5, GPT family.

▪ You should always check the existing leaderboards (e.g., ChatBotArena) to see
what’s the best and latest.

▪ Next, we’re going to spend a quite a bit of time delving into design decisions for
training LLMs.

29

LMSys ChatArena https://lmarena.ai/

https://lmarena.ai/

30

Pre-training language models:
Architectures

31

Training Pipeline for LLMs

Pretraining Adaptation and Alignment
Model with

random weights
Pretrained

model

High-utility model

(general-purpose or

specialized)

(smaller but labeled data)(Large but unlabeled data)

▪ There is extensive literature about best practices for pretraining

o What choice of architectures are good?

o How do you prepare pre-training data?

o What considerations go into efficient training of the models?

o …

▪ Our goal in this chapter is to summarizes the latest best and common practices.

Our focus

We will visit a few of
these branches …

Variants of positional
embeddings

Architectural choices

Multi-modal models

But there is a lot
that we do not

cover …

33

How consistent are the architectures
used in existing LLMs?

34

Another View of Architectural Variations

Low consensus
(except pre-norm)

Most try to follow
previous successful
choices.

[Slide credit: Tatsu Hashimoto]

35

When should we do
normalization?

36

Quiz: Pre-norm vs Post-norm

▪ Which is the original implementation?

▪ Which one is your favorite?

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝑥

𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 ,

37

Pre-norm vs Post-norm

▪ Pre-norm (right) is set up so that LayerNorm
does not disrupt the residual stream (in gray).

▪ In theory, both should work fine.

▪ In practice, however, Pre-norm is
preferred over Post-norm.

[On Layer Normalization in the Transformer Architecture, 2020]

38

Pre-norm vs Post-norm — Explanation?

▪ Stability, larger LRs for large networks and no need for warm up.

[Left and right from: On Layer Normalization in the Transformer Architecture, 2020]

[middle from: Transformers without Tears: Improving the Normalization of Self-Attention, 2019]

Gradient spikes

Gradient attenuation

[Slide credit: Tatsu Hashimoto]

Bonus

No need for warm-up stage

39

Layer Norm vs RMSNorm

▪ Original transformer: LayerNorm

o Normalizes the mean and variance across 𝑑𝑚𝑜𝑑𝑒𝑙

▪ Many modern LMs: RMSNorm

o Does not subtract mean or add a bias term

[Slide credit: Tatsu Hashimoto]

Notable models:
GPT3/2/1, OPT, GPT-J, BLOOM

Notable models:
LLaMA-family, PaLM, Chinchilla, T5

40

Why RMSNorm?

▪ Modern explanation – it’s faster (and just as good).

o Fewer operations (no mean calculation)

o Fewer parameters (no bias term to store)

▪ Does this explanation make sense?

o Matrix multiplies are the vast majority of FLOPs (and memory)

o Non-matmul ops only make up 0.2% of our FLOPS

• So perhaps it doesn't matter that GPUs compute non-matmul ops slower.

[Slide credit: Tatsu Hashimoto]

[Data Movement Is All You Need: A Case Study on Optimizing Transformers, 2020]

"Tensor Contraction" := matmuls

Bonus

41

Why RMSNorm?

▪ RMSNorm runtime (and surprisingly, perf) gains have been seen in papers

[Slide credit: Tatsu Hashimoto]

[Do Transformer Modifications Transfer Across Implementations and Applications?, 2021]

Bonus

42

Is the “bias” term
in FFNs necessary?

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2

43

The Bias Terms

▪ Most modern transformers don’t have bias terms.

o Original Transformer:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
and 𝑓 was defined as ReLU: 𝑓 𝑥 = max(0, 𝑥)

o Most implementations (if they’re not gated):

FFN 𝐱 = 𝑓 𝐱𝑾1 𝑾2

▪ Reasons: memory (similar to RMSnorm) and optimization stability.

[Slide credit: Tatsu Hashimoto]

𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑

44

Recap so far

▪ Basically, everyone does pre-norm.

o Intuition – keep the good parts of residual connections

o Observations – nicer gradient propagation, fewer spike

▪ Most people do RMSnorm

o In practice, works as well as LayerNorm

o But, has fewer parameters to move around, which saves on wallclock time

▪ Bias term:

o People more generally drop bias terms since the compute/param tradeoffs are
not great.

[Slide credit: Tatsu Hashimoto]

45

What activations 𝑓(.)
should we use?

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2

46

Activations

▪ No much consensus:

ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU, …

47

Activations: ReLU vs GeLU

▪ ReLU:

▪ GeLU:

Notable models:
Original transformer, T5,
Gopher, Chinchilla, OPT

[Slide credit: Tatsu Hashimoto]

FFN 𝐱 = max 0, 𝐱𝑾1 𝑾2

FFN 𝐱 = GELU 𝐱𝑾1 𝑾2

Notable models:
GPT1/2/3, GPTJ, GPT-
Neox, BLOOM

48

GELU, in details

FFN 𝐱 = GELU 𝐱𝑾1 𝑾2

GELU 𝐲 ≔ 𝐲Φ(𝐲)

▪ Here Φ(𝐲) the cumulative distribution function (CDF) of a normal distribution:

Φ y =
1

2
1 + erf

𝑥

√2

49

Activations: Gated activations (*GLU)

▪ Gated activations modify the first part of the activations:

FFN 𝐱 = max 0, 𝐱𝑾1 𝑾2

▪ Instead of a linear + ReLU, augment the above with an (entrywise) linear term:

max 0, 𝐱𝑾1 → max 0, 𝐱𝑾1 ۨ (𝐱𝐕)

▪ This gives the gated variant (ReGLU) – note that we have an extra parameter 𝐕:

FFN 𝐱 = max 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

[Slide credit: Tatsu Hashimoto]

Bonus

50

Activations: Gated activations variants

▪ GeGLU

▪ SwiGLU: swish function is 𝑥 ∗ sigmoid(𝑥):

▪ Note: Gated models use smaller dimensions for the 𝑑ff by 2/3

[Slide credit: Tatsu Hashimoto]

Notable models:
T5 v1.1, mT5, LaMDA

Notable models:
LLaMa, PaLM

FFN𝐺𝑒𝐺𝐿𝑈 𝐱;𝑾1,𝑾2, 𝑽 = GELU 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

FFN𝑆𝑤𝑖𝐺𝐿𝑈 𝐱;𝑾1,𝑾2, 𝑽 = Swish 0, 𝐱𝑾1 ۨ (𝐱𝐕) 𝑾2.

Bonus

51

Do Gated Linear Units work?

▪ Yes, fairly consistently so.

[GLU Variants Improve Transformer, 2020]

[Slide credit: Tatsu Hashimoto]

Bonus

https://arxiv.org/pdf/2002.05202

52

Do gated linear units work?

▪ Yes, fairly consistently so.

[Do Transformer Modifications Transfer Across Implementations and Applications?, 2021]

[Slide credit: Tatsu Hashimoto]

Bonus

53

Recap: Gating, activations

▪ Many variations (ReLU, GeLU, *GLU) across models.

▪ *GLU isn’t necessary for a good model (see GPT3)

▪ But evidence points towards somewhat consistent gains from Swi/GeGLU

54

Serial vs Parallel layers

55

Serial vs Parallel Layer

▪ Normal transformer blocks are serial – they compute attention, then the MLP

o Can they be parallelized? GPT-J introduced a simple change to do so!

▪ The standard “serial” formulation:

𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑥

▪ The parallel formulation:
𝑦 = 𝑥 + 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥)) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥))

o Note, LayerNorm can be shared, and matrix multiplies can be fused

▪ From PaLM paper: “The parallel formulation results in roughly 15% faster training
speed at large scales … Ablation experiments showed a small quality degradation at
8B scale but no quality degradation at 62B scale”

Notable models:
GPTJ, PaLM, GPT-NeoX

[PaLM: Scaling Language Modeling with Pathways, 2022]

https://arxiv.org/pdf/2204.02311

56

Recap

▪ Pre-vs-post norm:

o Everyone does pre-norm (except OPT350M).

▪ Layer vs RMSnorm:

o RMSnorm has clear compute wins, sometimes even performance.

▪ Gating:

o GLUs seem generally better, though differences are small

▪ Serial vs parallel layers:

o No extremely serious ablations; but parallel layers have a compute win.

57

Do you need all those keys?

58

Self-Attention layer variations

▪ We’re going to discuss a few variations of standard self-attention that are motivated
by computational bottlenecks.

▪ Previously we talked about one bottleneck: # of arithmetic operations

▪ Now we’re going to connect that to the # of read/writes from memory (IO)

59

Diversion: Arithmetic Intensity

▪ Arithmetic Intensity of a program execution:

(# of floating-point operations) / (# of data bytes transferred to memory)

▪ It helps determine whether a program is compute-bound or memory-bound:
o If AI is high, performance is limited by how fast the GPU can compute.

o If AI is low, performance is constrained by how fast data can be transferred between global
memory and GPU cores.

▪ A good rule of thumb:

o Memory-bound: AI < 10 FLOPs/byte

o Balanced: 10 ≤ AI ≤ 100 FLOPs/byte

o Compute-bound: AI > 100 FLOPs/byte

60

Quiz

▪ If a GPU kernel has high arithmetic intensity, which of the following is true?

o A) Performance is mostly limited by memory bandwidth

o B) Performance is mostly limited by compute throughput

o C) Memory accesses dominate execution time

o D) The workload is not well-suited for GPUs

▪ Answer: High AI means the GPU spends more time computing per byte of memory
fetched, making it compute-bound rather than memory-bound. Hence, B.

61

Arithmetic Intensity: An example

▪ We are going to compute AI for the first operation in Self-Attention.

▪ Note we assume that the full input sequence is given at once (e.g., training time).

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we want to compute: 𝐱𝐖𝑖
𝑞

. From last week:

AI = 𝑂
𝑏𝑛𝑑2

𝑑2 + 2𝑏𝑛𝑑
= 𝑂

𝑑2 + 2𝑏𝑛𝑑

𝑏𝑛𝑑2

−1

= 𝑂
1

𝑏𝑛
+
2

𝑑

−1

Dimensions Operation Computations IO

𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚 𝐱𝐖𝑖

𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑)

62

Quiz

▪ Given: 𝐱 ∈ ℝ𝑏×𝑛×𝑑 ,𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑

𝑚 we know that the AI for computing 𝐱𝐖𝑖
𝑞

is:

AI = 𝑂
1

𝑏𝑛
+
1

𝑑

−1

▪ This process is_____?

o Memory-bound

o Balanced

o Compute-bound

▪ Answer: Our AI is large-ish. Depending on hyperparams, this is either balanced or
compute-bound.

o If 𝑛 = 10 (sent len), 𝑏 = 10 (batch size), 𝑑 = 512 (hidden dim). Then AI = 71.

o If 𝑛 = 30 (sent len), 𝑏 = 20 (batch size), 𝑑 = 512 (hidden dim). Then AI = 179.

63

Arithmetic Intensity of Training
Self-Attention

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑛𝑑2) 𝑂(𝑑2 + 2𝑏𝑛𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛2𝑑) 𝑂(2𝑏𝑛𝑑 + 𝑏𝑚𝑛2) 𝑂 ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑛𝑑2) 𝑂(2𝑏𝑛𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏𝑛

−1

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

All these AI values are large!

We can continue running our
GPUs during training!

𝑏: batch size,

𝑛: sequence length,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑/𝑚: feature dimension inside each SA head
𝑑ff = 4𝑑: feature dimension inside FFN

Bonus

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

64

Self-Attention Cost of Computation During
Incremental (Autoregressive) Generation

▪ Note that these numbers involve KV-caching.

Operation Computations IO Arithmetic Intensity

𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣 for 𝑚 heads 𝑂(𝑏𝑑2) 𝑂(𝑑2 + 2𝑏𝑑) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑃𝑖 ← softmax
𝑸𝒊𝑲𝒊

T

𝑑/𝑚
for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +

ൗ1 𝑛
−1

head𝑖 ← 𝑃𝑖𝑽𝑖 for 𝑚 heads 𝑂(𝑏𝑛𝑑) 𝑂(𝑏𝑛𝑚 + 𝑏𝑛𝑑 + 𝑏𝑑) 𝑂 1 + ൗ𝑚 𝑑 +
ൗ1 𝑛

−1

𝑌 = Concat head1, … , head𝑚 𝑾𝑂 𝑂(𝑏𝑑2) 𝑂(2𝑏𝑑 + 𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1

𝑌 = ReLU 𝑌𝑾1 𝑾2 𝑂(16𝑏𝑑2) 𝑂(2𝑏𝑑 + 8𝑑2) 𝑂 ൗ1 𝑑 + ൗ1 𝑏

−1
𝑏: batch size,

𝑛: sequence length thus far,
𝑚: number of heads
𝑑: feature dimension in output of SA

𝑑ff = 4𝑑: feature dimension inside FFN

These two rows have low AI. For example, if 𝑛 = 20 (sent len),

ℎ = 12 (num heads), 𝑑 = 512 (hidden dim), then AI = 0.93.
Hence, our program is memory bound during inference!

Note this is partly due to the memory-bandwidth cost of

repeatedly loading the large "keys" and "values" tensors.

Bonus

66

KV-Cache drag

Try this calculator:

▪ Slowdown of autoregressive decoding.

o As the sequence length grows, KV cache size increases, making cache lookup slower.

o As we generate more output tokens (i.e. chatbot responding to user), throughput will slow
down.

▪ For GPT2, this comes out to a modest ~36 MB assuming
we use the max sequence length of 1024 tokens and a
batch size of 1. For larger models, however, the KV
Cache can take up GBs of memory.

o Try this calculator:

▪ Simple idea: Retain only the last 𝐿 tokens of the
KV-cache and compute attention using these recent tokens:

o Inference cost will be constant 𝑂(𝐿) per token.

https://tinkerd.net/blog/machine-learning/multi-query-attention/

67

Sparse / sliding window attention

▪ Right: Build sparse / structured attention that trades off expressiveness vs runtime.

▪ Left: Just use the main part of the strided pattern – let depth extend effective context (Mistral)

[Generating Long Sequences with Sparse Transformers, 2019]

Notable models:
GPT3 and Mistral

https://arxiv.org/abs/1904.10509

68

Quiz

▪ What are the drawbacks of sliding window?

1. If the model was not trained for sliding window, generation will be out-
of-distribution and unstable.

2. If uses few layers, it’ll retains local/recent information and cannot see
global context.

3. After a while, it will forget the input text (e.g. the original instruction
provided by the user).

4. All of the above.

[Slide credit: Samet Oymak]

70

Sliding Window Attention with “Sinks”

▪ Idea: We should better retain the initial tokens

o Intuition: The model should hold on to the user prompt which
kickstarted/instructed the LLM’s decoding

o During training: The model always relies on tokens at initial positions.

• We can’t suddenly remove initial positions 𝟏, 𝟐, 𝟑, ... during inference.

• Removing them results in a less stable inference (position encodings become OOD).

[Efficient Streaming Language Models with Attention Sinks, 2023]
[Slide credit: Samet Oymak]

Bonus

https://arxiv.org/abs/2309.17453

71

Sliding Window Attention with “Sinks”

▪ Standard Sliding Window Attention does work well but it requires re-computation
of KV cache to reset window’s positional encodings back to initial positions.

▪ StreamingLLM avoids this by always maintaining few initial positions (referred to as
sinks).

o Keeping initial tokens results in faster and more stable inference

[Efficient Streaming Language Models with Attention Sinks, 2023]
[Slide credit: Samet Oymak]

Bonus

https://arxiv.org/abs/2309.17453

72

Multi-Query Attention (MQA)

▪ The idea is to reduce the memory-bandwidth cost of repeatedly loading the large
"keys" and "values" tensors.

▪ Key idea – have multiple queries, but just one dimension for keys and values.

Small PPL w/ MQA [Shazeer 2019]

https://arxiv.org/pdf/1911.02150

73

MQA in practice
Bonus

Script

https://gist.github.com/danyaljj/27beda96053623a7499070fa4019c2a4

74

Grouped Query-Attention (GQA)

▪ An interpolation between “multi-head” attention and “multi-query” attention.

▪ Simple knob to control expressiveness (key-query ratio) and inference efficiency

Notable models:
Llama 2, Mistral, Qwen2

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023

75

Grouped Query-Attention (GQA)

▪ Does it actually work? Depends.

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023

Inference speed as a function of GQA group size — 8
heads gives you inference speed as good as 1 head!

Output quality of various models; all these
SA variants are on-par on quality.

77

Recap

▪ SA’s AI during inference is not good.

o We’re doing a lot of IO relative to computations (KV drag).

▪ Sliding window attention: sparsifying attention pattern by looking at nearby things.

▪ MQA and GQA: sharing attention keys and values.

78

Parameter tying

79

Embedding parameter tying

▪ The same weight matrix is used for both the input embeddings and the output (projection)
layer.

▪ Why?

o Theoretical justification: The input and output
embeddings should exist in the same space.

o Memory Efficiency: reduce the # of trainable params.

o Improved Generalization: It enforces consistency between
input vs output — the same representations are used in both
encoding and decoding.

Using the Output Embedding to Improve Language Models, 2017

https://arxiv.org/pdf/1608.05859

80

Is there a better way to encode
positional information?

81

O
O

O
O

O
O

𝑥1
O O O O O

O
O

O
O

O
O

𝑥2
O O O O O

O
O

O
O

O
O

𝑥3
O O O O O

O
O

O
O

O
O

𝑥4
O O O O O

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

Allows model to learn
relative positioning

𝑝𝑖 are positional
embeddings

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization
Notable models:
Original Transformer

82

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Limitations:

o We can have fixed encoding for each index training position (e.g., 1, 2, 3, … 1000).

o What happens if we get a sequence with 5000 words at test time?

▪ We want something that can generalize to arbitrary sequence lengths.

Notable models:
Original Transformer

Notable models:
GPT1/2/3 - OPT

83

Positional Embeddings: The Flavors

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o Intuition: encoding the relative positions, for example based on the distance of the tokens in
a local window to the current token.

Notable models:
Original Transformer

Notable models:
GPT1/2/3 - OPT

Notable models:
T5, Gopher, Chinchilla

84

A Unified Perspective on
Relative Positional Encoding

▪ You can rewrite the statement from the previous slide in the following form:

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

85

A Unified Perspective on
Relative Positional Encoding

▪ We are input sequence 𝒙0, 𝒙1, … and

o Then the unnormalized attention value between position 𝑖, and 𝑗 is:

𝑄𝐾𝑖𝑗 = 𝑊𝑞𝒙𝒊
𝑇
𝑊𝑘𝒙𝒋 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋

▪ Now also assume that positional embeddings are added to 𝒙𝒊, i.e., they’re 𝒙𝒊 + 𝒑𝑖

𝑄𝐾𝑖𝑗 = 𝑊𝑞[𝒙𝒊+𝒑𝑖]
𝑇
𝑊𝑘[𝒙𝒋+𝒑𝑗] = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒑𝑗+𝒑𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋+ 𝒑𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒑𝑗

The original attention term:

how much attention should we

pay to word 𝒙𝒋 given word 𝒙𝒊

How much attention

should we pay to word 𝒙
given the position 𝒑

How much attention

should position 𝒑𝒊 should
attend to position 𝒑𝒋

87

Relative Positional Encoding

▪ There have been various choices:

o T5 models simplify this into learnable relative embeddings 𝑷𝒊𝒋 such that:

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝑷𝒊𝒋

o DeBERTa learns relative positional embeddings ෥𝒑𝑖−𝑗 such that:

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+෥𝒑𝑖−𝑗
𝑇 𝑊𝑞

𝑇𝑊𝑘𝒙𝒋

o Tranformer-XL learns relative positional embeddings ෥𝒑𝑖−𝑗 and trainable vectors 𝒖, 𝒗 s.t.:

𝑄𝐾𝑖𝑗 = 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋 + 𝒙𝒊
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗+𝒖
𝑇𝑊𝑞

𝑇𝑊𝑘𝒙𝒋+𝒗
𝑇𝑊𝑞

𝑇𝑊𝑘 ෥𝒑𝑖−𝑗

o ALiBi learns learns a scalar 𝑚 such that:
𝑄𝐾𝑖𝑗 = 𝒙𝒊

𝑇𝑊𝑞
𝑇𝑊𝑘𝒙𝒋 − 𝑚 |𝑖 − 𝑗|

Exploring the Limits of Transfer Learning with a Unified Text -to-Text Transformer, 2020

Train Short, Test Long: Attention with Linear Bia4s2es Enables Input Length Extrapolation (2022)

88

Recap

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation

▪ RoPE embeddings: (next slide)

Notable models:
Original Transformer

Notable models:
GPT1/2/3 - OPT

Notable models:
T5, Gopher,
Chinchilla, Deberta
Tranformer-XL,

Notable models:
GPTJ, PaLM, LLaMA

89

Rotary Positional Encoding (RoPE)

▪ We want our embeddings to be invariant to absolute position.

▪ We know that inner products are invariant to arbitrary rotation.

[Slide credit: Tatsu Hashimoto]

Bonus

90

Thinking About Rotation Matrix

▪ In 2D, a rotation matrix can be defined in the following form:

𝑅𝜃,𝑚 =
cos𝑚𝜃 − sin𝑚𝜃
sin𝑚𝜃 cos𝑚𝜃

▪ The rotation increases with increasing 𝜃 and 𝑚. 𝒙 =
𝑎
𝑏

𝒙′ = 𝑎′
𝑏′

𝑥′ = 𝑅𝜃,𝑚𝑥

𝑚𝜃

Bonus

91

Rotary Positional Encoding (RoPE)

RoFormer: Enhanced Transformer with Rotary Posit ion Embedding (2022) Figure source

▪ Drop the additive positional encoding and make
it multiplicative.

𝑞𝑘𝑚𝑛 = 𝑅𝜃,𝑚𝑊𝑞𝒙𝑚
𝑇
𝑅𝜃,𝑛𝑊𝑘𝒙𝑛

= 𝒙𝑚
𝑇 𝑊𝑞

𝑇𝑅𝜃,𝑚
𝑇 𝑅𝜃,𝑛𝑊𝑘𝒙𝒋

o 𝜃: the size of rotation

o 𝑅𝜃,𝑚: rotation matrix, rotates a vector it gets
multiplied to proportional to 𝜃 and the
position index 𝑚.

▪ Intuition: nearby words have smaller relative
rotation.

Bonus

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb

92

Thinking About Rotation Matrix

▪ In practice, we are rotating 𝑑 dimensional embedding matrices.

▪ Idea: rotate different dimensions with different angles:

o Θ = {𝜃0, 𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑑/2}

Bonus

93

RoPE in its General Form

𝑞𝑘𝑚𝑛 = 𝑅Θ,𝑚
𝑑 𝑊𝑞𝒙𝑚

𝑇
𝑅Θ,𝑚
𝑑 𝑊𝑘𝒙𝑛 ,

▪ where 𝑅Θ,𝑚
𝑑 is a 𝑑-dimensional rotation matrix.

▪ Since 𝑅Θ,𝑚
𝑑 is a sparce matrix, its multiplication is implemented via dense operations:

Bonus

94

Implementation and code for RoPE

▪ Note: embedding at each attention operation to enforce position invariance

[Slide credit: Tatsu Hashimoto]

Bonus

95

Recap

▪ Sine embeddings: add sines and cosines that enable localization

▪ Absolute embeddings: add a position vector to the embedding

▪ Relative embeddings: add a vector to the attention computation

▪ RoPE embeddings: uses rotations to encode relative distances.

Notable models:
Original Transformer

Notable models:
GPT1/2/3 - OPT

Notable models:
T5, Gopher,
Chinchilla, Deberta
Tranformer-XL,

Notable models:
GPTJ, PaLM, LLaMA

96

Which overall architecture
should I use?

97

Architectures: Different Choices

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus

98

Architectures: Different Attention Masks

▪ Fully visible mask allows the self attention mechanism to attend to the full input.

▪ A causal mask doesn’t allow output elements to look into the future.

▪ Causal mask with prefix allows to fully-visible masking on a portion of input.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus

99

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

100

Architectural Variants: Experiments

Input: Thank you for <X> me to your party
<Y>. Target: <X> inviting <Y> last week.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

101

Architectural Variants: Experiments

Number of
parameters

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

102

Architectural Variants: Experiments

Number of FLOPS

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

103

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

104

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

105

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

106

Architectural Variants: Experiments

Language model is decoder-only

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

107

Architectural Variants: Experiments

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

108

Architectural Variants: Experiments

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

109

Architectural Variants: Experiments

▪ Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

110

Architectural Variants: Experiments

▪ Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.

2. Performance of Enc-Dec with shared params is almost on-par with prefix LM.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Evaluated for classification tasks.

Bonus

111

Overall architecture

112

Architecture Hyperparams

There are a ton of question regarding architecture hyperparameters:

▪ How much bigger should the feedforward size be compared to hidden size?

▪ How many heads? Should # of heads always divide hidden size?

▪ Should we make our model wide or deep?

113

The Surprising Consensus #1:
FFN Dimension Ratio

▪ Feedforward – model dimension ratio:

FFN 𝐱 = 𝑓 𝐱𝑾1 + 𝑏1 𝑾2 + 𝒃2
𝑾1 ∈ ℝ𝑑×𝑑ff ,
𝑾2 ∈ ℝ𝑑ff×𝑑

▪ There are two dimensions that are relevant – the feedforward dim (𝑑ff) and model
dim (𝑑). What should their relationship be?

𝑑ff = 4𝑑

▪ This is almost always true. There’s just a few exceptions.

[Slide credit: Tatsu Hashimoto]

114

Why this range of multipliers?

▪ Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal.

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto]

https://arxiv.org/pdf/2001.08361

115

Exception #1 — GLU/Gated variants

▪ Remember that GLU variants scale down by 2/3 rd. This means most GLU variants

have 𝑑ff =
8

3
× 𝑑. This is mostly what happens. Some notable such examples:

▪ Models are roughly in this range, though PaLM, LLaMA2 and Mistral are slightly larger
[Slide credit: Tatsu Hashimoto]

Bonus

116

Exception #2 - T5

▪ As we have (and will) see, most LMs have boring, conservative hyperparameters.

▪ One exception is T5 [Raffel et al 2020] which has some very bold settings.

▪ In particular, for the 11B model, they set

▪ For an astounding 64-times multiplier.

[Slide credit: Tatsu Hashimoto]

𝑑ff = 65,536
𝑑 = 1024

Bonus

117

The Surprising Consensus #2:
Model Dimension Ratio

▪ Remember:

▪ The consensus: dim of head (
𝑑

ℎ
) x num-heads (ℎ) = model-dim (𝑑)

▪ This doesn’t have to be true: we can have head-dimensions > model-dim / num-
heads. The matrix (𝑾𝑂) can take care of projection to model-dim.

o But most models do follow this guideline

[Slide credit: Tatsu Hashimoto]

head𝑖 = Attention 𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣

MultiHeadedAttention 𝐱 = Concat head1, … , headℎ 𝑾𝑂

In practice, we use a reduced dimension for each head.

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
ℎ, 𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
ℎ, 𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
ℎ, 𝑾𝑂 ∈ ℝ𝑑×𝑑

118

Heads vs model dim

▪ Some examples of this hyperparameter:

▪ Most models have ratios around 1 – notable exceptions by some google models.

[Slide credit: Tatsu Hashimoto]

ℎ 𝑑/ℎ 𝑑
num-heads x head-dim / model-dim

119

Aspect radios

▪ Should my model be deep or wide? How deep and how wide?

▪ Most models are surprisingly consistent on this one too!

▪ Note here width is the hidden dimension, not the context window width. [Slide credit: Tatsu Hashimoto]

Bonus

120

Considerations about aspect ratio

▪ Extremely deep models are harder to parallelize

[Slide credit: Tatsu Hashimoto]

121

Evidence on aspect ratio scaling

[Kaplan et al 2020]

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto]

Wide range of ‘good’ values (100-200)

https://arxiv.org/pdf/2001.08361

122

Recap of architecture hyperparams

▪ Feedforward dimension / model dimension

o Factor-of-4 rule of thumb (8/3 for GLUs) is standard (with some evidence)

▪ Head dim

o Head dim*Num head = D model is standard – but not much validation

▪ Aspect ratio

o Wide range of ‘good’ values (100-200). Systems concerns dictate the value.

[Slide credit: Tatsu Hashimoto]

123

Tokenizers

124

What Tokenizers do people use?

▪ The non-google world uses BPE. Google uses the SentencePiece library, which
(sometimes) refers to a non-BPE subword tokenizer

▪ Important property – all of these tokenizers are mostly*invertible.

o * except the ones that do lowercasing and aggressive normalization [Slide credit: Tatsu Hashimoto]

125

What are typical vocabulary sizes?

Monolingual models – 30-50k vocab Multilingual / production systems 100-250k

Monolingual vocabs don’t need to be huge, but multilingual ones do [Slide credit: Tatsu Hashimoto]

126

Dealing with white spaces
Multi-whitespace

tokenization (GPT-NeoX)

[Slide credit: Tatsu Hashimoto]

127

Dealing with numbers

https://www.artfish.ai/p/how-would-you-tokenize-or-break-down

Mixral, Llama, DeepSeek, and Gemma
tokenizers broke down numerical sequences
into a separate token for each digit.

GPT-4 and GPT-4o tokenizers broke down
numerical sequences into groups of 3.

129

Tokenizers

▪ Everyone uses invertible subword tokenizers (BPE, Unigram) for good reason.

▪ For math and code, careful manual handling of whitespace and numbers can help.

[Slide credit: Tatsu Hashimoto]

130

Summary of LLM architectures

▪ There are many architectural variations.

▪ Major differences? Position embeddings, activations, tokenization

▪ This is an evolving field; a lot of empirical analysis is going into identifying best practices.

[Picture credit: Tatsu Hashimoto]

131

Pre-training language models:
Pre-training data

132

The pre-training data size and sources

▪ They vary
quite a bit!

▪ They used to be
in billions of tokens;
now they’re north
of trillions.

133

Where do we begin to collect data?

▪ Where do I find a very large dataset?

o Crawling web is non-trivial (unless you’re OpenAI or Google with ton of resources).

o But if you have to do it, be aware that websites have their own permissions
regarding which parts of their content, if any, can be crawled. (next slide)

o The alternative is to look for websites that have done the crawling for you.

134

Robots.txt

▪ A plain text file that tells web crawlers which parts of a website they can access.

▪ When a web crawler visits a website, it first checks the robots.txt file (if available)
before crawling other pages.

▪ AI companies release the details of their crawlers:
https://platform.openai.com/docs/bots/

https://github.com/ai-robots-txt/ai.robots.txt

More examples:
https://www.youtube.com/robots.txt
https://www.jhu.edu/robots.txt

https://platform.openai.com/docs/bots/
https://github.com/ai-robots-txt/ai.robots.txt
https://www.youtube.com/robots.txt
https://www.jhu.edu/robots.txt

135

Robots.txt’s are becoming
increasingly more restrictive

▪ A longitudinal analyses show that in the past few years, a major chunk of websites
have restricted their data to AI crawlers.

Consent in Crisis: The Rapid Decline of the AI Data Commons, 2024

file:///Consent%20in%20Crisis/%20The%20Rapid%20Decline%20of%20the%20AI%20Data%20Commons,%202024

136

CommonCrawl

▪ A non-profit organization that release a new crawl of the internet every month they.

o So far, there have been ~100 crawls from 2008-2024.

o In 2016, a crawl took 10-12 days on 100 machines. They used Apache Nutch.

o This is not a complete of the internet. Crawls have some overlap but try to diversify.

• Common Crawl follows links from previously crawled pages.

o Also note, it respects robots.txt

▪ CC is a common sources of pre-training data.

o WARC: The raw HTTP responses, including
full web pages.

o WAT: The metadata summary from WARC files.

o WET: The extracted plaintext from WARC files,
stripping out HTML and other non-textual content.

https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

137

CC is messy. Is that a concern?

Besides quantity, the choice of dataset is also critical

[Slide credit: Samet Samik]

139

C4: A cleaned up pre-training dataset

▪ C4: Colossal Clean Crawled Corpus

o The course is CommonCrawl.

o English language only

o 750GB after ton of filtering

▪ Notice that the unfiltered data is quite large.

o Common Crawl is mostly not useful natural language

Play with the data: https://c4-search.apps.allenai.org/

https://c4-search.apps.allenai.org/

140

C4: The Data

Slide adapted from Colin Raffel

Remove any:
• References to Javascript
• Pages with ”{“ (no code), “Lorem ipsum”

text (dummy text), “terms of use”, etc.
• Pages with ”bad words”.

Retain:
• Sentences with terminal

punctuation marks
• Pages with at least 5 sentences,

sentences with at least 3 words

https://www.lipsum.com/
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en

141

Pre-training Data: Experiment

▪ Takeaway:

o Clean and compact data is better than large, but noisy data.

o Pre-training on in-domain data helps.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

142

Does it matter that my
data has ton of repetitions?

143

Pre-training Data Duplicates

▪ There is a non-negligible number of duplicates in any pre-training data.

Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022

144

Pre-training Data Duplicates

▪ There is a non-negligible number of duplicates in any pre-training data.

▪ Maybe we should not spend our training budget re-learning things we have already seen.

Deduplicating Training Data Makes Language Models Better, 2020

145

Deduplicating Data Improves LMs

▪ Models: GPT-2-like (1.5B param) models

▪ On there datasets:

o C4 : the original training data

o C4-NearDup: C4 excluding exact duplicates

o C4-ExactSubs: C4 excluding
near-duplicates

Deduplicating Training Data Makes Language Models Better, 2020

Training on deduplicated data
always leads to lower PPL!

Except when evaluated on
duplicate evaluation data!

146

Deduplicating Data Improves LMs

▪ Another evidence from Gopher paper: Performance of 1.4B parameter models (lower
is better) trained on OpenWebText, C4, and versions of MassiveWeb with
progressively more pre-processing stages added.

▪ Applying a quality filter and de-duplication stages significantly improves quality.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2022

https://arxiv.org/pdf/2112.11446

147

How can I do my own
deduplication?

148

How do you scale data deduplication?

▪ Pre-training is huge. Naively deduplicating the data is going to take forever!!

▪ How do you deduplicate it? Here are a few options:

o SuffixArray

o MinHash

o BloomFilters

o Embedding-based dedup

149

The simplest: hashing documents

▪ Hash all documents, so each document receives one unique hash.

▪ Efficiency: This will be fast.

▪ Granularity:

o This will be sensitive to small changes; any change in the document (e.g., one
word change) would change its hash.

o Also, we’re deduplicating full documents.

▪ Different choices of hashing functions (trade off between efficiency vs collision):

o Collison: h(x) = h(y), if x!=y.

o Cryptographic hashing (SHA-256, SHA-3, BLAKE2); collision resistant but slow.

o DJB2, MurmurHash, CityHash: Not collision resistant but fast.

Bonus

150

What are Suffix Arrays?

▪ A common approach is using Suffix arrays — A suffix array for a string T (of length m)
is an array of integers [0, m) that correspond to suffixes of T $, stored in sorted order.

o Example: T = “abaaba$”

▪ Space complexity:

o O(m)
0 abaaba$

1 baaba$

2 aaba$

3 aba$

4 ba$

6 a$

7 $

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Sort suffixes
lexicographically

Now you can
drop the strings

6

5

2

3

0

4

1

Suffix arrays: a new method for on-line string searches, 1993

Bonus

https://epubs.siam.org/doi/abs/10.1137/0222058

151

What are Suffix Arrays?

▪ A common approach is using Suffix arrays — A suffix array for a string T (of length m)
is an array of integers [0, m) that correspond to suffixes of T $, stored in sorted order.

o Example: T = “abaaba$”

▪ Space complexity:

o O(m)

▪ You don’t need the suffixes since, given their index, you can look them up from T.

0 abaaba$

1 baaba$

2 aaba$

3 aba$

4 ba$

6 a$

7 $

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Sort suffixes
lexicographically

Now you can
drop the strings

6

5

2

3

0

4

1

Bonus

152

Suffix arrays: querying

▪ Querying: Is P a substring of T?

▪ Two crucial observations:

1. For P to be a substring, it must be a prefix of ≥1 of T’s suffixes.

2. Suffixes sharing a prefix are consecutive in the suffix array.

▪ Example: Given SA of T = “abaaba$”
find the indices (if any) of substring P = “aba”.

▪ In practice, we can use binary search to to check
whether P is a prefix of any suffix.

▪ Complexity: O(n log m)

o for m = len(T) and n = len(P)

o See an example here.

6 $

5 a$

2 aaba$

3 aba$

0 abaaba$

4 ba$

1 baaba$

Now you can
drop the strings

6

5

2

3

0

4

1

Bonus

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_10_suffix_arrays_2.pdf

153

LCS with SuffixArrays

▪ Suffix arrays also allows us to quickly check overlap between pairs of documents.

▪ Querying: Given SA of T, what is its Longest Common Subsequence (LCS) with P?

▪ This can also be done with binary search O(n log m) for m = len(T) and n = len(P).

▪ See an example here.

Find more about these algorithms in Ben Langmead’s course: https://www.langmead-lab.org/teaching.html

Bonus

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_20_suffix_arrays_4.pdf
https://www.langmead-lab.org/teaching.html

154

Deduplication with Suffix Arrays

▪ Concatenating all text in the corpus together and then sorting each suffix.

▪ By scanning this sorted list, substrings with a common prefix can by identified by
scanning the prefices of neighboring elements in the sorted list.

▪ This latter step can be done in an embarrassingly parallel fashion.

▪ Granularity:

o Note SAs can only do exact deduplication!

o But it can allow you to do deduplication on substrings/sub-documents.

▪ Hyperparameter: the length of overlap

o Lee at al. deduplicated substrings that are at least 50 tokens long.

See example here: https://github.com/google-research/deduplicate-text-datasets/blob/master/README.md
Uses MinHash: Lee at al. Deduplicating Training Data Makes Language Models Better, 2020

Bonus

https://github.com/google-research/deduplicate-text-datasets/blob/master/README.md
https://arxiv.org/abs/2107.06499

155

Deduplication with MinHash

▪ MinHash is a locality-sensitive hashing technique used to group sets into collections
based on their Jaccard similarity.

o Note, unlike SuffixArrays, MinHash can do “fuzzy” deduplication!

o Hyperparameters: the n-gram-size, and the number of permutations used.

o Lee et al used:

• n-gram-size of 5 tokens and Jaccard sim < 0.8;

• 9K permutations, split into 450 buckets of 20 hashes each.

o Li et al. used: 1,395 permutations, split into 93 buckets of size 15.

Uses MinHash: Lee at al. Deduplicating Training Data Makes Language Models Better, 2020
Uses MinHash: Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Also see: https://blog.nelhage.com/post/fuzzy-dedup/

Bonus

https://arxiv.org/abs/2107.06499
https://arxiv.org/pdf/2406.11794
https://blog.nelhage.com/post/fuzzy-dedup/

156

▪ Bloom filters are a data structure that enable space-efficient set membership queries.

o A Bloom filter maintains a sketch of a set (in sublinear space) that supports an

• insert operation,

• a probabilistic membership_query operation.
• Note: The latter operation has no false negatives (i.e., return False for an element in the set),

but it may occasionally return a false positive (i.e., return True for an element not in the set).

▪ Efficiency: Li et al. say that BF is “vastly more efficient than a MinhHash and SuffixArrays.”

▪ Granularity:

o Can be used for both exact dedup (like Sondaini et al) and ”fuzzy” dedup!

o Caveat: MinHash performs doc-level deduplication at a document vs. document level,
whereas BFF performs document-level deduplication at a document vs. corpus level.

▪ Hyperparams: Number of hashers which determines the false positive rate.

Deduplication with BloomFilters

BloomFilters: Space/time trade-offs in hash coding with allowable errors, 1970

Uses BloomFilter: Soldaini at al. Dolma: An open corpus of three trillion tokens for language model pretraining research, 2024 https://github.com/allenai/bff

Bonus

https://dl.acm.org/doi/abs/10.1145/362686.362692
https://arxiv.org/abs/2402.00159
https://github.com/allenai/bff

157

Comparison between dedup algorithms

▪ Single methods: BF better than any other method standalone.

▪ Combination: The competitive approaches are last row (exact -> MH -> SA) and BF-
only. The former leads to more compact data.

Li et al. DataComp-LM: In search of the next generation of training sets for language models, 2024

Individual
technique

Combined
techniques

https://arxiv.org/pdf/2406.11794

158

Deduplication in embedding space

▪ D4 performs dedup in embedding space of sentences by a pre-trained sentence embedder:

o (1) deduplication: drop data points in epsilon-ball around each data point.

o (2) diversification: k-means to cluster points and drop those far from centroids

▪ Does it work?

o Yes, it gives 22% training speedup over baseline (random selection).

o Is it better than MinHash? Depends

D4: Improving LLM Pretraining via Document De-Duplication and Diversification, 2024

Number of Tokens Seenselection ratio

Bonus

d4:%20Improving%20LLM%20Pretraining%20via%20Document%20De-Duplication%20and%20Diversification,%202024

159

Deduplication: Recap

▪ Does it matter that my data has ton of repetitions? Yes, one should do careful dedup.

▪ How can I do my own deduplication?

o Scaling it up requires advanced data structures.

o So far, there is no clear winner between these algorithms. A “kitchen sink” approach
that mixes dedup algorithms is generally best, but it’s an empirical exercise.

o BF is generally preferred since it’s cheaper/faster.

160

Should I worry about old data
in my pre-training?

161

Prevalence of stale data

▪ Breakdown of old versions of Wikipedia in RedPejamas

▪ RedPejamas which is based on dumps from C4, CC and a recent Wikipedia dump.

▪ The bars blow show the breakdown of older versions of Wikipedia in RedPajamas.

o There is a ton of old Wikipedia versions in RedPejamas!

▪ The solid trend is the perplexity of a pre-trained model on temporal instances of Wikipedia.

o The significant stale training data in has skewed PPL toward older versions of Wikpedia.

Dated Data: Tracing Knowledge Cutoffs in Large Language Models, 2024

Bonus

https://arxiv.org/abs/2403.12958

162

Should I worry about skew of
the data mixtures in my pre-training?

163

Data Mixtures

▪ Your dataset mixture will determine the versatility of the resulting model.

▪ Data in the world is always skewed. For example,

o English has a lot more language than other domains.

o Reddit is a lot larger than science papers.

▪ A uniform ”weight” of data during pre-training is not good since overrepresented
domains would dominate (e.g., your model would be a better at English than Azeri).

▪ Overamplifying underrepresented domains also runs risk of overfitting.

▪ So, there is a lot of research on finding good balance.

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets, 2024
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, 2023

Bonus

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429

164

Language filtering

▪ Many works limit their data to English.

▪ Chinese models (e.g., Qwen and DeepSeek) are mostly English + Chinese.

▪ The issue is the difficulty curating high-quality data. Also cost training on more data.

▪ GPT-4, Claude, Gemini are all multilingual.

▪ How do people identify languages? A popular choice is fastText which supports 176 langs.

▪ Danger in English-only filtering:

o accidentally filtering out dialect of English.

o Ill-defined for code-switching (e.g., English + Chinese).

Bonus

https://fasttext.cc/docs/en/language-identification.html

165

Few notable data pipelines

166

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Starts with the massive crawled data by CommonCrawl.

The WET format that contains textual information.
WARC is raw, WAT is metadata, WET is text+some metadata.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

167

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB).

Then you normalize paragraphs (lowercasing, numbers as placeholders, etc),
compute per-paragraph hashes and then duplicate them.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

168

LLaMA 1’s Data Pipeline

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g

Perform language identification and decide whether to keep or discard languages.

The order of when you do this in the pipeline can impact the language discrimination quality.

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

169

LLaMA 1’s Data Pipeline

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019

Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia,

then compute per-paragraph perplexity on the rest of the data:
• Very high PPL: Very different than Wiki and likely low-quality → Drop

• Very low PPL: Very similar or near duplicates to Wiki → Drop

170

DataDecomp-LM filtering pipeline

DataComp-LM: In search of the next generation of training sets for language models, 2024

171

Few cleaned-up pre-training datasets

Dataset Example
models

Tokens Source License Lang

C4
(Raffel et al. 2020)

T5 165B CC ODC-BY English

The Pile
(Gao el al. 2020)

GPT-J, Pythia 300B 22 datasets including CC,
books, code, news

Varies by dataset subset English

RedPejamas
(Weber et al. 2024)

Llama 1 1.2T CC, C4, Github, Arxiv, Books,
Wikipedia, StackExchange

Varies by dataset subset English

RefinedWeb
(Penedo et al. 2023)

Falcon 600B CC ODC-BY 1.0 English

Dolma
(Soldaini et al. 2024)

OLMo 3T CC, C4, Gutenberg, Github,
Wikipedia, Wikibooks

ImpACT MR English

DataComp-LM
(Li et al. 2024)

SmolLM2,
DCLM

240T CC ? English

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2406.11794

172

The Pile

▪ Pile-CC: From Common Crawl; uses justText to extract useful text.

▪ PubMed Central: 5M NIH funded papers and public.

▪ arXiv: preprint for research papers since 1991 (uses latex).

▪ Gutenberg PG-19: Online books (before 2019) with copyright clearance.

▪ Books3 is a a collection of ~200K books. Has been subject of lawsuits.

▪ StackExachange: Q&A format is close to real applications.

▪ Github: Content is not just the code.

o Note, GH archive has regular snapshots of Github (commits, forks, etc.)

Slide inspiration: Percy LiangThe Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020

https://github.com/miso-belica/jusText
https://github.com/google-deepmind/pg19
https://huggingface.co/datasets/defunct-datasets/the_pile_books3
https://www.wired.com/story/battle-over-books3/
https://www.gharchive.org/
https://arxiv.org/abs/2101.00027

173

Summary: preparing pre-training data

▪ Data does not fall from the sky. You have to work to get it!

▪ Finding large data: CommonCrawl has a ton of crawled dumps, but not the only one.

▪ Cleaning data can save tons of compute and even give you gains.

▪ Repetitions are often a waste of compute and deteriorate model quality.

▪ Scaling deduplication requires advanced data structures.

▪ Old data old data may skew your model predictions, but it depends on your application.

▪ Data mixtures are quite important, though depend on your downstream application.

174

Pre-training language models:
The actual training

175

What pre-training objectives
should I use?

Bonus

176

On Pre-training Objectives

▪ So far, the dominant objective we have seen is “next-token” prediction.

▪ In reality any “marginal” observations about language can be a source of
supervision.

Bonus

177

Objectives

▪ Prefix language modeling
o Input: Thank you for inviting

o Output: me to your party last week

▪ BERT-style denoising
o Input: Thank you <M> <M> me to your party

apple week

o Output: Thank you for inviting me to your
party last week

▪ Deshuffling
o Input: party me for your to. last fun you

inviting week Thanks.
o Output: Thank you for inviting me to your

party last week

● IID noise, replace spans
○ Input: Thank you <X> me to your party <X> week

○ Output: <X> for inviting <Y> last <Z>

● IID noise, drop tokens
○ Input: Thank you me to your party week .

○ Output: for inviting last

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Bonus

178

Objectives: Experiments

▪ All the variants perform similarly

▪ “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because
target sequences are shorter, speeding up training.

Exploring the limits of transfer learning with text-to-text transfer transformers, 2020

Assuming Enc-Dec architecture.

Evaluated for classification tasks.

Bonus

179

How should we select the
right hyperparams?

180

IsoPlots: Tradeoffs at a smaller scale

▪ The performance of your model depends on a complex
combination of many factors.

▪ Goal: find the best combinations, for a fixed compute.

▪ It’s good to change various parameter (e.g., training
data, size, or other hyperparams) and see how it’s
quality changes.

181

How should I
train the model?

182

Optimizers

▪ Most modern models use “AdamW” optimizer (not vanilla Gradient Descent).

o Adam optimization is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order “momentums”.

o “W” because it decouples “weight decay”
from “learning rate”. (Details out of scope
for us. See the cited paper.)

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

[Decoupled Weight Decay Regularization, 2017]

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

183

Batching Data

▪ Previously we talked about the
importance of batching data

▪ GPUs are faster at Tensor operations and
hence, we want to do batch processing

▪ The lager batch of data, the faster they
get processed.

▪ Alas, the speedup is often sub-linear
(e.g., 2x larger batch leads to less than
2x speedup).

Model: 13B LLaMA on A100 GPU

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

184

Batch sizes: some known statistics

An Empirical Model of Large-Batch Training, 2018

LLaMA: Open and Efficient Foundation Language Models, 2023

The Llama 3 Herd of Models, 2024

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024

https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04434

185

Can I fit this model in which GPU?

▪ One of the followings:

o You have a model a model and want to find the right GPU for it.

o You have a GPU and want to find the largest model to fit in.

▪ What should we do?

o The memory taken up by a model depends on:

• Model parameters

• Activations: notice that these increase with larger batch and seq length

• Gradients (of training)

186

The Memory Usage

▪ Here is the memory usage of an NVIDIA A100 when serving (i.e., no training)

o Model: 13B LLaMA

o Batch size of 10

▪ ~65% of your GPU memory is
the model parameters that never change

▪ ~32% of your memory are KV tensors that
change for each input.

o This KV cache will increase for larger batch sizes.

o Managing this part of the memory is key for
efficient training.

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

187

How many parameters does my
Transformer have?

▪ Let’s count the number of parameters:

▪ The self-attention block params:

o 3 × 𝑑 ×
𝑑

𝑚
× 𝑚 + 𝑑2 = 4𝑑2

▪ The FFN block params:

o 2 × 𝑑 × 𝑑ff

▪ So, in total: 4𝑑2 + 2𝑑𝑑ff

▪ The ratio of SA/FFN parameters is
2𝑑

𝑑ff
and 𝑑ff is usually 2-4 larger than 𝑑.

▪ In most models, roughly 2/3 of transformer parameters are feedforward blocks

▪ Notice that the num of params in independent of seq length (𝑛) or batch size (𝑏)!

o So, in theory you should be able to run your SA on sequences of any length!

• (but would it work on longer sequences? -- more on this later)

𝑚: number of heads

𝑑: feature dimension in output of SA

𝐖𝑖
𝑞
∈ ℝ𝑑×

𝑑
𝑚,𝐖𝑖

𝑘 ∈ ℝ𝑑×
𝑑
𝑚,𝐖𝑖

𝑣 ∈ ℝ𝑑×
𝑑
𝑚,𝑾𝑂 ∈ ℝ𝑑×𝑑

head𝑖 ← Attention 𝐱𝐖𝑖
𝑞
, 𝐱𝐖𝑖

𝑘, 𝐱𝐖𝑖
𝑣

𝐱 ← MHAttention 𝐱 = Concat head1, … , headℎ 𝑾𝑂

𝐱 ← 𝑓 𝐱𝑊1 + 𝑏1 𝑊2 + 𝑏2
𝑾1 ∈ ℝ𝑑×𝑑ff ,𝑾2 ∈ ℝ𝑑ff×𝑑

(note, not showing layer-norm and residuals)

Bonus

188

Dropout and other regularization

▪ Do we need regularization during pretraining?

▪ Arguments against:

o There is a lot of data (trillions of tokens), more than parameters.

o SGD only does a single pass on a corpus (hard to memorize)

▪ This is all quite reasonable.. but what do people do in practice?

[Slide credit: Tatsu Hashimoto]

189

Dropout and weight decay in practice

Many older models used
dropout during pretraining

Newer models (except
Qwen) rely only on weight
decay

* Most of the times papers just don’t discuss dropout. On open models, this closely

matches not doing dropout. This may not be true of closed models.
[Slide credit: Tatsu Hashimoto]

190

Why weight decay LLMs?

▪ [Andriushchenko et al 2023] has interesting observations about LLM weight decay

It’s not to control overfitting Weight decay interacts with learning rates (cosine schedule)

[Slide credit: Tatsu Hashimoto]

191

Convergence

▪ In practice, your model’s loss should continue
to go down with more training on more data.

▪ So, the real bottlenecks are:

o (1) compute

o (2) data

▪ Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

192

Staged pre-training

▪ Few models do staged pre-training (e.g., llama3).

1. Start with pre-training indiscriminative on all sorts of data (including short data).

2. Do continued pre-training on long text.

3. Annealing (learning rate going to zero)

Bonus

193

Recap of training LLMs

▪ IsoPlots: for a fixed compute, which combination of parameters give you the best
bang for the buck.

▪ Careful batching makes your training go brrr!

▪ Memory usage can be tricky since there are various moving parts.

o More on distributed training later on.

▪ Dropout is less common but you still ‘regularize’ LMs via large-scale training.

194

Mixture of Experts (MoE)

Slide credit to Tatsu Hashimoto and Samet Oymak
for earlier versions of these slides.

195

Mixture of Experts (MoE)

[Slide credit: Tatsu Hashimoto]

196

Mixture of Experts (MoE)

▪ Two main elements (NNs):

o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.

o A gate networking/router: It determines which tokens are sent to which experts.

▪ You can increase the # experts without affecting FLOPs

[A Review of Sparse Expert Models in Deep Learning, 2022]

https://arxiv.org/abs/2209.01667

197

Why are MoE’s getting popular?

▪ Same FLOP, more param does better

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022]

https://arxiv.org/pdf/2101.03961

198

Why are MoE’s getting popular?

▪ Faster training over a dense
(non-MOE) model

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022]

https://arxiv.org/pdf/2101.03961

199

Why are MoE’s getting popular?

▪ Have faster inference compared to
the dense models of the same size
model

200

Why are MoE’s getting popular?

▪ Parallelizable to many devices
(more on this in a bit)

▪ MoEs parallelize nicely
since each FFN (expert) can
fit in a device.

[Slide credit: Tatsu Hashimoto]

201

MoE variants

Typical: replace MLP with MoE layer Less common: MoE for attention heads

[ModuleFormer, JetMoE]

202

Top-k routing, intuitively

▪ Most models use the class top-k routing which involves 3 steps:

o (1) Scoring: Produces a distribution
over the experts.

o (2) Routing: identify the set of top-k
experts and assign their scores:

o (3) weighted sum among top-k:
creates weighted average of experts
summed with the residuals.

203

Top-k routing, in detail

▪ Most models use the class top-k routing which involves 3 steps:

o (1) Scoring: Suppose the input feature (the input to MoE layer) is 𝒙.
The gates are selected by a logistic regression (i.e., linear scoring + softmax)
which produces a distribution over the experts.

𝒔 = Softmax(𝒙𝑊𝑟) where 𝑊𝑟 are the trainable params

o (2) Routing: identify the set of top-k experts and assign their scores:

𝑔𝑖 = ቊ
𝑠𝑖 𝑠𝑖 ∈ TopK 𝑠𝑗 1 ≤ 𝑗 ≤ 𝑁 ,𝐾)

0 𝑜. 𝑤.

o (3) weighted sum among top-k:

𝒚 = ෍

𝑖

𝑔𝑖 𝐹𝐹𝑁𝑖(𝒙) + 𝒙

This is how DeepSeek and
Grok implement MoE layer.

Mixtral and DBRX
softmax after the TopK

204

Recent variations: shared experts

▪ Smaller, larger number of experts + a few shared experts that are always on.

▪ The idea is to have induce more complementarity among experts, by having a shared
expert that takes the care of easy/common skills.

Used in
DeepSeek / Qwen

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

https://arxiv.org/abs/2401.06066

205

Various ablations from the DeepSeek paper

▪ More experts, shared experts all seem to generally help

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

https://arxiv.org/abs/2401.06066

206

Why haven’t MoEs been more popular?

▪ Infrastructure is complex / advantages on multi node.

[A Review of Sparse Expert Models in Deep Learning, 2022]

https://arxiv.org/abs/2209.01667

207

Why haven’t MoEs been more popular?

▪ Training stability: Because of the discrete nature of MoE’s decisions, small changes in router
weights can have disproportionate effect in the outcomes.

o One solution is adding stochasticity during training to encourage exploration.

▪ Redundancy and hybridity: There is a tendency for multiple experts to converge in learning
similar information. This dilutes the specialization of experts and results in overlapping
knowledge domains and inefficient use of parameters.

o One solution is using shared experts (used by DeepSeek).

▪ Load balancing: The imbalance calls to few few popular experts makes MoE inefficient. During
training, the gating network may converge to few experts which may continue to self-reinforce as
favored experts are trained quicker and hence selected more.

o One common solution is using an auxiliary loss to encourage giving all experts equal
importance.

▪ Complex infrastructure: Often you need a lot of a lot of GPU memory to fit your model and
run it efficiently.

o A lot to discuss on this but beyond the scope of our class.

[A Review of Sparse Expert Models in Deep Learning, 2022]

https://arxiv.org/abs/2209.01667

208

Side issue – stochasticity of MoE models

▪ There was speculation that GPT-4’s stochasticity was due to MoE.

▪ Why would a MoE have additional randomness?

▪ Token dropping from routing happens at a batch level – this means that other
people’s queries can drop your token! [Slide credit: Tatsu Hashimoto]

209

Summary

▪ MoEs take advantage of sparsity – not all inputs need the full model

▪ Discrete routing is hard, but top-k heuristics seem to work

▪ Lots of empirical evidence now that MoEs work, and are cost-effective

210

Bonus content on MoE

211

Mixture of Experts (MoE)

▪ Two main elements (NNs):

o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.

o A gate networking/router: It determines which tokens are sent to which experts.

▪ You can increase the # experts without affecting FLOPs

[A Review of Sparse Expert Models in Deep Learning, 2022]

Bonus

https://arxiv.org/abs/2209.01667

212

MoE variants

▪ Routing function

▪ Expert sizes

▪ Training objectives

Bonus

213

Variations of routing function

▪ Observation: choosing experts based on the input usually entails a discrete selection
(i.e. which expert to use), which complicates backprop relying on differentiability.

▪ The pioneering work of Shazeer et al. 2017 formulated routed function that was
adopted and adapted by many follow-on works. Here is how it worked:

1. Top-𝑘 routing function which takes as an input a token representation 𝒙,

2. Then routes it to the top-𝑘 experts out of the set 𝑁 experts.

[Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017]

Bonus

https://arxiv.org/abs/1701.06538

214

Routing function

▪ Many of the routing algorithms boil down to “choose top k”

[A Review of Sparse Expert Models in Deep Learning, 2022]

Each token

chooses top-k
expert

Each expert

chooses top-k
token

Global routing

tokens should go to
which experts

Bonus

https://arxiv.org/abs/2209.01667

215

Common routing variants

▪ Used in most MoEs

o Switch Transformer (k=1)

o Gshard (k=2), Grok (2),

o Mixtral (2), Qwen (4),

o DBRX (4), DeepSeek (7)

▪ Common baseline

[Slide credit: Tatsu Hashimoto]

[A Review of Sparse Expert Models in Deep Learning, 2022]

Bonus

https://arxiv.org/abs/2209.01667

216

Other routing variants

▪ RL to learn routes

o Used in some of the earliest work
Bengio 2013, not common now

▪ Solve a matching problem

o Linear assignment for routing

o Used in various papers like Clark ‘22

[A Review of Sparse Expert Models in Deep Learning, 2022]

https://arxiv.org/abs/2209.01667

217

Some recent MoE results

▪ MoEs are most of the highest-performance open models and are quite quick.

Bonus

218

Some recent MoE results – Qwen
Bonus

219

Some recent MoE results – DeepSeek

▪ There’s also some good recent
ablation work on MoEs showing
they’re generally good.

[Slide credit: Tatsu Hashimoto]

Bonus

220

How do we train MoEs?

▪ Major challenge: we need sparsity for training-time efficiency...

o But sparse gating decisions are not differentiable!

▪ Solutions?

1. Reinforcement learning to optimize gating policies

2. Stochastic perturbations

3. Heuristic ‘balancing’ losses.

Guess which one people use in practice?

[Slide credit: Tatsu Hashimoto]

Bonus

221

How do we train MoEs?

▪ RL via REINFORCE does work, but not so much better that it’s a clear win

▪ RL is the ‘right solution’ but gradient variances and complexity means it’s not widely used.

(REINFORCE baseline approach, Clark et al 2020)

[Slide credit: Tatsu Hashimoto]

Bonus

222

Stochastic approximation

▪ From Shazeer et al 2017 – routing decisions are stochastic with gaussian perturbations.

o This naturally leads to experts that are a bit more robust.

o The softmax means that the model learns how to rank K experts

[Slide credit: Tatsu Hashimoto]

[Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017]

Bonus

https://arxiv.org/abs/1701.06538

223

Stochastic approximation

▪ Stochastic jitter in Fedus et al 2022. This does a uniform multiplicative perturbation for the
same goal of getting less brittle experts. This was later removed in Zoph et al 2022

[Slide credit: Tatsu Hashimoto]

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022]

Bonus

https://arxiv.org/pdf/2101.03961

224

Load balancing losses

▪ A key issue regarding systems efficiency: using the experts evenly.

▪ Define an auxiliary loss and add it the total model loss during training.

[Slide credit: Tatsu Hashimoto]

[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2022]

So if an expert gets triggered or
get assigned higher probability,

downweight their share

Bonus

https://arxiv.org/pdf/2101.03961

225

Recent Extensions of Load Balancing

▪ Per-expert balancing – same as the switch transformer

▪ Per-device balancing – the objective above, but aggregated by device.

[Slide credit: Tatsu Hashimoto]

[DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 2024]

Bonus

https://arxiv.org/abs/2401.06066

226

Training MoEs – the systems side

▪ MoE routing allows for parallelism, but also some complexities

▪ Modern libraries like MegaBlocks (used in many open MoEs) use smarter sparse MMs

[Slide credit: Tatsu Hashimoto]

Bonus

227

Training MoEs – the systems side

▪ Enables additional kinds of parallelism

[Slide credit: Tatsu Hashimoto]

[A Review of Sparse Expert Models in Deep Learning, 2022]

Bonus

https://arxiv.org/abs/2209.01667

228

Side issue – stability

▪ Solution: Use Float 32 just for the expert router (sometimes with an aux loss)

[Zoph et al 2022]

[Slide credit: Tatsu Hashimoto]

Bonus

229

Issues with MoEs — fine-tuning

▪ Sparse MoEs can overfit
on smaller fine-tuning data

▪ Zoph et al solution – finetune
non-MoE MLPs

▪ DeepSeek solution – use
lots of data 1.4M SFT [Slide credit: Tatsu Hashimoto]

Bonus

230

Other training methods — Upcycling

▪ Can we use a pre-trained LM to initialize a MoE?

[Slide credit: Tatsu Hashimoto]

Bonus

231

Upcycling example - MiniCPM

▪ Uses the MiniCPM model (topk=2, 8 experts, ~ 4B active params).

▪ Simple MoE, shows gains from the base model with ~ 520B tokens for training

[Slide credit: Tatsu Hashimoto]

Bonus

232

Upcycling example – Qwen MoE

▪ Qwen MoE – Initialized from the Qwen 1.8B model top-k=4, 60 experts w/ 4 shared.

▪ Similar architecture / setup to DeepSeekMoE, but one of the first (confirmed)
upcycling successes

[Slide credit: Tatsu Hashimoto]

Bonus

233

Upcycling example (?) Mixtral

▪ Some people think Mixtral may also be upcycled

▪ but since Mixtral is only open weights (no open training code) we don’t really know ..

[Source: https://twitter.com/tianle_cai/status/1734188749117153684][Slide credit: Tatsu Hashimoto]

Bonus

https://twitter.com/tianle_cai/status/1734188749117153684

234

Why haven’t MoEs been more popular?

▪ Training objectives are somewhat heuristic (and sometimes unstable):

[Zoph et al 2022]

[Slide credit: Tatsu Hashimoto]

Bonus

	Slide 1: Transformer Language Models
	Slide 2: Transformers: Recap
	Slide 3: After Transformer …
	Slide 4
	Slide 5: The Phases of Our Understanding
	Slide 6: Chapter Plan
	Slide 7
	Slide 8: Impact of Transformers
	Slide 9
	Slide 10: Encoder-Decoder models: T5
	Slide 11: Encoder-Decoder models: T5
	Slide 12: Encoder-Decoder models: T5
	Slide 13: Recap: Enc-dec models
	Slide 14
	Slide 15: Encoder-only models (BERT)
	Slide 16: Encoder-only models (BERT): Probing its predictions
	Slide 17: Encoder-only models (BERT): Probing its predictions
	Slide 18: Encoder-only models (BERT): Pre-training Objectives
	Slide 19: Encoder-only models (BERT): Pre-training Objectives
	Slide 20: Encoder-only models (BERT): Fine-tune for tasks
	Slide 21: Encoder-only models (BERT): One of the Early Signs on the Effectiveness of Scale
	Slide 22: Encoder-only models (ModernBERT): Recent Reincarnation of BERT
	Slide 23: Recap: Encoder-only models
	Slide 24
	Slide 25: Decoder-only (GPT)
	Slide 26: GPT4
	Slide 27: Other Available [Decoder] LMs
	Slide 28: Summary: Existing models
	Slide 29: LMSys ChatArena
	Slide 30
	Slide 31: Training Pipeline for LLMs
	Slide 32
	Slide 33
	Slide 34: Another View of Architectural Variations
	Slide 35
	Slide 36: Quiz: Pre-norm vs Post-norm
	Slide 37: Pre-norm vs Post-norm
	Slide 38: Pre-norm vs Post-norm — Explanation?
	Slide 39: Layer Norm vs RMSNorm
	Slide 40: Why RMSNorm?
	Slide 41: Why RMSNorm?
	Slide 42
	Slide 43: The Bias Terms
	Slide 44: Recap so far
	Slide 45
	Slide 46: Activations
	Slide 47: Activations: ReLU vs GeLU
	Slide 48: GELU, in details
	Slide 49: Activations: Gated activations (*GLU)
	Slide 50: Activations: Gated activations variants
	Slide 51: Do Gated Linear Units work?
	Slide 52: Do gated linear units work?
	Slide 53: Recap: Gating, activations
	Slide 54
	Slide 55: Serial vs Parallel Layer
	Slide 56: Recap
	Slide 57
	Slide 58: Self-Attention layer variations
	Slide 59: Diversion: Arithmetic Intensity
	Slide 60: Quiz
	Slide 61: Arithmetic Intensity: An example
	Slide 62: Quiz
	Slide 63: Arithmetic Intensity of Training Self-Attention
	Slide 64: Self-Attention Cost of Computation During Incremental (Autoregressive) Generation
	Slide 66: KV-Cache drag
	Slide 67: Sparse / sliding window attention
	Slide 68: Quiz
	Slide 70: Sliding Window Attention with “Sinks”
	Slide 71: Sliding Window Attention with “Sinks”
	Slide 72: Multi-Query Attention (MQA)
	Slide 73: MQA in practice
	Slide 74: Grouped Query-Attention (GQA)
	Slide 75: Grouped Query-Attention (GQA)
	Slide 77: Recap
	Slide 78
	Slide 79: Embedding parameter tying
	Slide 80
	Slide 81: Positional Embeddings: The Flavors
	Slide 82: Positional Embeddings: The Flavors
	Slide 83: Positional Embeddings: The Flavors
	Slide 84: A Unified Perspective on Relative Positional Encoding
	Slide 85: A Unified Perspective on Relative Positional Encoding
	Slide 87: Relative Positional Encoding
	Slide 88: Recap
	Slide 89: Rotary Positional Encoding (RoPE)
	Slide 90: Thinking About Rotation Matrix
	Slide 91: Rotary Positional Encoding (RoPE)
	Slide 92: Thinking About Rotation Matrix
	Slide 93: RoPE in its General Form
	Slide 94: Implementation and code for RoPE
	Slide 95: Recap
	Slide 96
	Slide 97: Architectures: Different Choices
	Slide 98: Architectures: Different Attention Masks
	Slide 99: Architectural Variants: Experiments
	Slide 100: Architectural Variants: Experiments
	Slide 101: Architectural Variants: Experiments
	Slide 102: Architectural Variants: Experiments
	Slide 103: Architectural Variants: Experiments
	Slide 104: Architectural Variants: Experiments
	Slide 105: Architectural Variants: Experiments
	Slide 106: Architectural Variants: Experiments
	Slide 107: Architectural Variants: Experiments
	Slide 108: Architectural Variants: Experiments
	Slide 109: Architectural Variants: Experiments
	Slide 110: Architectural Variants: Experiments
	Slide 111
	Slide 112: Architecture Hyperparams
	Slide 113: The Surprising Consensus #1: FFN Dimension Ratio
	Slide 114: Why this range of multipliers?
	Slide 115: Exception #1 — GLU/Gated variants
	Slide 116: Exception #2 - T5
	Slide 117: The Surprising Consensus #2: Model Dimension Ratio
	Slide 118: Heads vs model dim
	Slide 119: Aspect radios
	Slide 120: Considerations about aspect ratio
	Slide 121: Evidence on aspect ratio scaling
	Slide 122: Recap of architecture hyperparams
	Slide 123
	Slide 124: What Tokenizers do people use?
	Slide 125: What are typical vocabulary sizes?
	Slide 126: Dealing with white spaces
	Slide 127: Dealing with numbers
	Slide 129: Tokenizers
	Slide 130: Summary of LLM architectures
	Slide 131
	Slide 132: The pre-training data size and sources
	Slide 133: Where do we begin to collect data?
	Slide 134: Robots.txt
	Slide 135: Robots.txt’s are becoming increasingly more restrictive
	Slide 136: CommonCrawl
	Slide 137
	Slide 138
	Slide 139: C4: A cleaned up pre-training dataset
	Slide 140: C4: The Data
	Slide 141: Pre-training Data: Experiment
	Slide 142
	Slide 143: Pre-training Data Duplicates
	Slide 144: Pre-training Data Duplicates
	Slide 145: Deduplicating Data Improves LMs
	Slide 146: Deduplicating Data Improves LMs
	Slide 147
	Slide 148: How do you scale data deduplication?
	Slide 149: The simplest: hashing documents
	Slide 150: What are Suffix Arrays?
	Slide 151: What are Suffix Arrays?
	Slide 152: Suffix arrays: querying
	Slide 153: LCS with SuffixArrays
	Slide 154: Deduplication with Suffix Arrays
	Slide 155: Deduplication with MinHash
	Slide 156: Deduplication with BloomFilters
	Slide 157: Comparison between dedup algorithms
	Slide 158: Deduplication in embedding space
	Slide 159: Deduplication: Recap
	Slide 160
	Slide 161: Prevalence of stale data
	Slide 162
	Slide 163: Data Mixtures
	Slide 164: Language filtering
	Slide 165
	Slide 166: LLaMA 1’s Data Pipeline
	Slide 167: LLaMA 1’s Data Pipeline
	Slide 168: LLaMA 1’s Data Pipeline
	Slide 169: LLaMA 1’s Data Pipeline
	Slide 170: DataDecomp-LM filtering pipeline
	Slide 171: Few cleaned-up pre-training datasets
	Slide 172: The Pile
	Slide 173: Summary: preparing pre-training data
	Slide 174
	Slide 175
	Slide 176: On Pre-training Objectives
	Slide 177: Objectives
	Slide 178: Objectives: Experiments
	Slide 179
	Slide 180: IsoPlots: Tradeoffs at a smaller scale
	Slide 181
	Slide 182: Optimizers
	Slide 183: Batching Data
	Slide 184: Batch sizes: some known statistics
	Slide 185: Can I fit this model in which GPU?
	Slide 186: The Memory Usage
	Slide 187: How many parameters does my Transformer have?
	Slide 188: Dropout and other regularization
	Slide 189: Dropout and weight decay in practice
	Slide 190: Why weight decay LLMs?
	Slide 191: Convergence
	Slide 192: Staged pre-training
	Slide 193: Recap of training LLMs
	Slide 194
	Slide 195: Mixture of Experts (MoE)
	Slide 196: Mixture of Experts (MoE)
	Slide 197: Why are MoE’s getting popular?
	Slide 198: Why are MoE’s getting popular?
	Slide 199: Why are MoE’s getting popular?
	Slide 200: Why are MoE’s getting popular?
	Slide 201: MoE variants
	Slide 202: Top-k routing, intuitively
	Slide 203: Top-k routing, in detail
	Slide 204: Recent variations: shared experts
	Slide 205: Various ablations from the DeepSeek paper
	Slide 206: Why haven’t MoEs been more popular?
	Slide 207: Why haven’t MoEs been more popular?
	Slide 208: Side issue – stochasticity of MoE models
	Slide 209: Summary
	Slide 210
	Slide 211: Mixture of Experts (MoE)
	Slide 212: MoE variants
	Slide 213: Variations of routing function
	Slide 214: Routing function
	Slide 215: Common routing variants
	Slide 216: Other routing variants
	Slide 217: Some recent MoE results
	Slide 218: Some recent MoE results – Qwen
	Slide 219: Some recent MoE results – DeepSeek
	Slide 220: How do we train MoEs?
	Slide 221: How do we train MoEs?
	Slide 222: Stochastic approximation
	Slide 223: Stochastic approximation
	Slide 224: Load balancing losses
	Slide 225: Recent Extensions of Load Balancing
	Slide 226: Training MoEs – the systems side
	Slide 227: Training MoEs – the systems side
	Slide 228: Side issue – stability
	Slide 229: Issues with MoEs — fine-tuning
	Slide 230: Other training methods — Upcycling
	Slide 231: Upcycling example - MiniCPM
	Slide 232: Upcycling example – Qwen MoE
	Slide 233: Upcycling example (?) Mixtral
	Slide 234: Why haven’t MoEs been more popular?

