JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Transformer Language Models

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs. jhu.edu/sp2025/

Transformers: Recap

: ¥
ol

Output
Probabilities

Linear

'y
Add & Norm J
Feed
Forward
I ~\ Add & Norm
ﬁ— .
Geelle i Multi-Head
Feed Attention
Forward D) Nx
_l
Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
C— J . —)
Positional @_@ @ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

After Transformer ...

Yang et al. Harnessing the Power of
LLMs in Practice: A Survey on
ChatGPT and Beyond, 2023

Evolutionary
Tree

Closed-Source

Flan
uL2 (€]

Flan
15

)g!ae

Switch

LLaMA[#,N

G

|Claud§.

|Jurassic-2}a2!

BardG [GPT-4 6

OPT-IML[0N "
BLOOMZ[%] GalacticaleN]GLM]E
pal{

Sparrod©
BLOOM| %]
OPT[9))

IChinchillaIQ

EI)O Minenvd G
paNG

|Instruct6@@
GLaMG_ [Gopher]©

O |

G
[ERNTE3.9%((v |

Cohere/#®

Jurassic-1jgs

GPT-[®)
GPT-Neo[®]

PT-36

GPT-NeoX[®)

Tadk EG = %
XLNetfc] R — iol5
| Iclosed source i L]
. GPT-2[&)] ol
n%"‘Dec rlo
\' GPT-1 @ T ()
Encoder»Only R ﬂ@
®
Gl =4
oVe g
FastText e moo

The Phases of Our Understanding

“Language modeling is a useful subtask for many NLP tasks”
— everyone, pre-2018

“Language modeling is a useful supertask for many NLP tasks”
— everyone, post-2018

Chapter Plan

1. Transformer-based families of Language Models
2. Architectural variants

3. Thinking about pre-training data

4. Practical hacks and variants

Chapter goal — extending out understanding of training transformer language
models.

Transformer

Language Model Families

Impact of Transformers

= A building block for a variety of LMs

=1 Encoder-
>

E-N
=

L

Loz

Decoders

Encoders

Decoders

Examples: Transformer, T5, Meena

What's the best way to pretrain them?

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context. Wait, how do we pretrain them?

Examples: GPT-2, GPT-3, LaMDA
Other name: causal or auto-regressive language model

Nice to generate from; can’t condition on future words

Encoder-Decoder Family of
Transformers

|

T Encoder-
EQY Decoders

Encoder-Decoder models: T5

= Architecture:
o The encoder portion benefits from bidirectional context. “
o The decoder portion is used to train the whole model %
through language modeling. S
o Similar to the original Transformer enc-dec architecture. 3

@ lons 10

Encoder-Decoder models: T5

= Pretraining objective: Randomly corrupt tokens and replace with sentinel tokens
(<x>, <y>) that is unique over the example.

Targets Yi Y,

/’ <x> for inviting <v> last <7>

Original text

Thank you fef m%m@ me to your party I:a}st week.

e —

Thank you <X> me to your party <Y> week.

Decoder

Encoder

@ onsH X, X

Encoder-Decoder models: T5

Transformer Parameters Num Embedding Context/Sequence
Model Count Layers Dimensions Length
T5 Small ~60M 6 512 512
T5 Base ~220M 12 768 512
T5 Large ~770M 24 1024 512
T5-3B 3B 24 1024 512

T5-11B 11B 24 1024 512

Recap: Enc-dec models

= The most canonical form of Transformers.

= Notable example: T5.

13

=

Encoder-only Family of Transformers

14

Encoder-only models (BERT)

= Transformer encoder-only

551 JoHNS HOPKINS
1[‘." .

BERT is trained to uncover masked tokens.

brown 0.92
lazy 0.05
playful 0.03

LITT]
12 [ENCODER J
2 [ENCODER
1 [ENCODER

1 2 3 4

[CLS] Help Prince Mayuko

512

https://arxiv.org/abs/1810.04805

Encoder-only models (BERT):
Probing its predictions

= Masking words forces BERT to use context in both directions to predict the masked
word.
Paris is the [MASK] of France.

P

Compute

0.997
0.001
0.000
0.000
city 0.000

</> JSON Qutput Maximize

16

https://huggingface.co/bert-base-uncased

Encoder-only models (BERT):
Probing its predictions

= Masking words forces BERT to use context in both directions to predict the masked

word.
Today is Tuesday, so tomorrow is [MASK].

Compute
. 0.274
friday
0.211
wednesday
0.139
thursday
0.108
monday
0.077
sunday
</> JSON Output Maximize

wh..".': . https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

Encoder-only models (BERT):
Pre-training Objectives

= Token masking: Randomly mask 15% of tokens and train the model to recover them.

E-N i
e JOH NS

L

Use the output of the 01% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

[FFNN + Softmax]

BERT

Randomly mask
15% of tokens

[CLS] Let’s stic to [MASK] r

Input

[CLs] lLet's st

Encoder-only models (BERT):
Pre-training Objectives

= Token masking: Randomly mask 15% of tokens and train the model to recover them.
o Too little masking: Too expensive to train
o Too much masking: Underdefined
* (not enough info for the model to recover the masked tokens)

= Sentence ordering: Predict sentence ordering
o Learns the relationships between sentences
o 50% correct ordering, and 50% random incorrect ones

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

19

L

Encoder-only models (BERT):
FinE'tune fOI‘ taSkS “Pretrain once, finetune many times.”

o Idea: Make pre-trained model usable in downstream tasks (often classification)
o Initialized with pre-trained model parameters
o Fine-tune model parameters using labeled data from downstream tasks

@ Mask LM Mag LM \ /@ MAD StarvEnd Spaﬁ
_® *

— 20—
[Tiser)]m m (e][1] [Ty][Tiser)][il] [Ty]
L, .| [>
B . s i s -
BERT afe = 2 2 2 uu’ BERT
[fem [&] [E [Eeem][&] [&] [een][&] [[Eem][&] [&]
= LT Lf LT [=——1 ==l——r L7 i LT [
Masked Sentence A Masked Sentence B Question Paragraph
& *
\\ Unlabeled Sentence A and B Pair / \K\\ Question Answer Pair /
Pre-training Fine-Tuning

E-N
]
-

20

https://arxiv.org/abs/1810.04805

Encoder-only models (BERT): One of the
Early Signs on the Effectiveness of Scale

= Going from 110M -> 340M params helps a lot

= Improvements have not plateaued!

Effect of Model Size

— MNLI (400k) = MRPC (3.6 k)
88

86

84

82

Dev Accuracy

80

50 100 150 200 250 300

Transformer Params (Millions)

https://arxiv.org/abs/1810.04805

Encoder-only models (ModernBERT):
Recent Reincarnation of BERT

= Essentially a BERT-like architecture but a few key changes:
o Longer context: Trained for context window of 8,192 tokens (vs. 512 in BERT)
o MLP layer: Drop the bias term to save costs.
o More norms: Add an extra normalization layer after embeddings.
o Replaced activations: Replaced GeLU activation with GeGLU (will talk about this)
o Pos encoding: Replaced the sine/cosine with rotary embeddings (will talk about this)

IR (DPR) IR (ColBERT) NLU Code
Model BEIR MLDRoop MLDRpp, BEIR MLDRoop GLUE CSN SQA
BERT 38.9 23.3 317 495 28.5 852 416 60.8
o RoBERT 41.4 22.6 36.1 498 28.8 889 473 68.1
% DeBERTaV3 25.6 7.1 192 467 23.0 914 212 197
=~ GTE-en-MLM 425 36.4 489 507 71.3 87.6 405 66.9

ModemmBERT 44.0 343 48.6 524 80.4 904 595 839

22

oy
ol

https://arxiv.org/abs/2412.13663
https://huggingface.co/blog/modernbert

Recap: Encoder-only models

= Transformer-based decoder-only models trained on massive piles of data.

= Common use-cases:
o Provide incredible framework contextualized embeddings of words.
o It also allows fine-tuning on your particular task (usually top layers).

= However, they were not designed to generate text — unless you do
additional work.

23

Decoder-only Family of Transformers

L 2227Y Decoders

24

Decoder-only (GPT)

= Generate sequences where each token is predicted based on the previously
generated tokens

= Use causal masking to ensure the causality

= Trained to maximize log-likelihood defined for next-token prediction.
Y Y2 Y3 Ya Y5 Ye

i

raw attention weights mask X1 Xo X3 X4 X5 Xg

F-I_;‘ JOHNS Fcws e
-l 1 "

0] spuane

<

Figure source:

https://peterbloem.nl/blog/transformers

Model Usage

G P I 4 davinci-002 $0.0020 / 1K tokens

Model Input Output

gpt-4 $0.03 / 1K tokens $0.06 / 1K tokens
= Transformer-based

o Therestis mystery! ©
o Rumor: GPT-4 is a Mixture of Experts model (we'll talk about it).

o If we're going based on costs, GPT4 is ~15-30 times costlier than GPT3. That
should give you an idea how its likely size!

= Note, these language models involve more than just pre-training.
o Pre-training provides the foundation based on which we build the model.
o We will discuss the later stages (i.e., alignment) in a 2-3 weeks.

https://openai.com/pricing 26

https://openai.com/pricing

Other Available [Decoder] LMs

EleutherAl: GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B)
https://huggingface.co/EleutherAI
https://6b.eleuther.ai/

LLaMA, 65B: https://github.com/facebookresearch/l1lama

Mistral and Mixtral:
https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.2

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-veo.1

QY JOHINS TIOPKINS 27

https://github.com/facebookresearch/llama
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Summary: Existing models

There is a ton of models out there.

= We talked about a few: BERT, T5, GPT family.

= You should always check the existing leaderboards (e.g., ChatBotArena) to see
what'’s the best and latest.

= Next, we're going to spend a quite a bit of time delving into design decisions for
training LLMs.

oy
. |

28

LMSys ChatArena

Rankx (UB)

alal
11
11
11
12
12
12

12

Rank
(StyleCtrl)

1

3

171
13
14
13
12
17
17

13

Model

chocolate (Early Grok-3)

Gemini-2.0-Flash-Thinking-Exp-01-21

DeepSeek:R1

Gemini-2.9:-Flash-001
01:2024:12.:17
ol-preview

093:-minizhigh

DeepSeek:V3

Plus-0125

Qwen

GLM-4-Plus-0111

Gemini-2.0-Flash-Lite-Preview-02-05

03:mini
ol:-mini

G

Arena
Score

1403

1385

1380

1377

1362

1358

1352

1335

1334

1332

1318

1311

1310

1309

1306

1304

1304

1302

https://Imarena.ai/

95% CI a

+6/-6
+4/-6
+5/-6
+5/-5
+7/-7
+7/-7
+5/-5
+3/-4
+5/-5
+5/-9
+4/-5
+9/-7
+6/-9
+6/-5
+5/-6
+7/-7
+4/-3

+3/-3

Votes

9992

15083

13000

13470

6581

10862

17248

33169

9282

5954

19461

5112

5134

10262

12179

5130

54944

54970

A

Oxganization

XAT
Google
Google
OpenAI
DeepSeek
Google
OpenAI
OpenAI
Alibaba
OpenAl
DeepSeek
Alibaba
Zhipu
Google
OpenAI
StepFun
OpenAI

Google

+ License

Proprietary
Proprietary
Proprietary
Proprietary
MIT
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
DeepSeek
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary

Proprietary

29

https://lmarena.ai/

Pre-training language models:

Architectures

Training Pipeline for LLMs

= There is extensive literature about best practices for pretraining
o What choice of architectures are good?
o How do you prepare pre-training data?
o What considerations go into efficient training of the models?
O ...

= Qur goal in this chapter is to summarizes the latest best and common practices.

Our focus
High-utility model

Model with . . i . .
random wvc\gights‘ G, = Freane dmmp Adaptation and Alignment | ms) (general-.pﬁrpzj,e or
specialize

‘:1-;._‘ - , (Large but unlabeled data) = (smaller but labeled data) 31

Variants of positional
embeddings

Architectural choices

Multi-modal models

KX-formers

p. —

—{ Attenti —
ention —(Lm:al Transformer[156], Gaussian Transformer[42])

Prior —(Predictive Attention Transformer[143], Realformer[51], Lazyformer[159] J . « e
— We will visit a few of

—(Average Attention[164], Hard-Coded Gaussian Attention[161], 5ynthesim[131])

A[I.i et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]) t h eS e b r a n C h e S

Collaborative MHA[21]

Multi-head —(A.dapﬁve Attention Span[126], Multi-Scale Transformer[44])
Dynamic Routing[40, 74]

‘Absolute)—(BERT[ZE], Wang et al. [139], FLOATER[gs]]

Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24] J B ut t h e re I S a | Ot

DeBERTa[50]

Other Rep. —TUPE[63], Roformer{124]) t h d t we d (@) nOt

Implicit Rep)—(C omplex Embedding[140], R-Transformer [144], CPE[20]

)
Placement)—(post-LN[zs. 83, 137], pre-LN[6, 17, 67, 136, 141] j Cove r
)

—(LayerNorm Substitutes)—(AdaNorm[lSi‘s] scaled £3 normalization[93], PowerNorm[121]
Norm-free)—(ReZem-Tmnsfomer[S])
Activ: Func. }—(Swish[106], GELU[14, 28], GLU[118])
Enlarg-e Product-key Mefnm'y[ﬁg], Gshard[71], Switch Transformer[36], j
Capacity Expert Prototyping[155], Hash Layer[110]

Dropping)—CAll-Attenﬁun layer[127], Yang et al. [157])

—(Lighweight Hht: Transformer[148], Funnel Transformer[23], DeLighT[91])

(Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Tmnsfmm:r [34]
UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al [129]

Yoshida et al. [160], ERNIE-Doc[30]

Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[45]

Transformer-XL[24], Compressive Transformer[103], Memformer[147] J

—(Alt Arch.)—@T[IZS] Macaren Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

—{(Encoder }—{(BERT([25), RoBERTa[57], BigBird[163])

——{Pre-Train }-+—Decoder —{GPTL101], GPT-2[102], GPT-3(12])

—(EncDecA)—(BART[?Z], T5[104], Switch Tmnsfnrmer[:ﬂﬁ]]

—(NLP)—(BERT[ZB],ET[IZS], Transformer-XL[24] Compressive Transformer[103], TENER[154] j

—(CV)—(I.mage Transformer([94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]]

—(Aud.la)—(Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56] j

—(Multimodal)—(VisualBERT[ﬁ]. VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView{29])

How consistent are the architectures
used in existing LLMs?

|

33

Another View of Architectural Variations

Original transformer
GPT

T5(11B)

GPT2

T5 (XXL 11B) v1.1
mT5

GPT3 (175B)
GPTJ

LaMDA

Gopher (280B)
GPT-NeoX
BLOOM (175B)
OPT (175B)

PaLM (540B)
Chinchilla

Mistral (7B)
LLaMA2 (70B)
LLaMA (65B)
Qwen (14B)
DeepSeek (67B)

Yi (34B)

LayerNorm
LayerNorm
RMSNorm
LayerNorm
RMSNorm
RMSNorm
LayerNorm

LayerNorm

RMSNorm
LayerNorm
LayerNorm
LayerNorm
RMSNorm
RMSNorm
RMSNorm
RMSNorm
RMSNorm
RMSNorm
RMSNorm

RMSNorm

Serial
Serial
Serial
Serial
Serial
Serial
Serial

Parallel

Serial
Parallel
Serial
Serial
Parallel
Serial
Serial
Serial
Serial
Serial
Serial

Serial

Sine
Absolute
Relative
Sine
Relative
Relative
Sine
RoPE
Relative
Relative
RoPE
AliBi
Absolute
RoPE
Relative
RoPE
RoPE
RoPE
RoPE
RoPE

RoPE

RelU
GelLU
RelLU
GelLU
GeGLU
GeGLU
GelLU
GelLU
GeGLU
RelU
GelU
GelLU
RelU
SwiGLU
RelU
SwiGLU
SwiGLU
SwiGLU
SwiGLU
SwiGLU

SwiGLU

Low consensus
(except pre-norm)

Most try to follow
previous successful
choices.

[Slide credit: Tatsu Hashimoto]

34

=

When should we do
normalization?

|

Quiz: Pre-norm vs Post-norm

out

= Which is the original implementation? e ~\

= Which one is your favorite? Add & Norm

Feed
Forward
Yy

LayerNorm(x + SubLayer(x))

Add & Norm

Multi-Head
Attention

I T
\ J

x + SubLayer(LayerNorm(x)),

X: input sequence

L I £ 36

Pre-norm vs Post-norm

= Pre-norm (right) is set up so that LayerNorm
does not disrupt the residual stream (in gray).

= In theory, both should work fine.

= In practice, however, Pre-norm is
preferred over Post-norm.

E-N
L]

Figure 1. (a) Post-LN Transformer layer; (b) Pre-LN Transformer

layer.

Xi+1

addition

]

Layer Norm

addition

¥

Multi-Head
Attention

X

(a)

~—Ir

O ' [On Layer Normalization in the Transformer Architecture, 2020]

Xi+1

addition

-

Multi-Head
Attention

X
(b)

T

37

Bonus

Pre-norm vs Post-norm — Explanation?

= Stability, larger LRs for large networks and no need for warm up.

Gradient spikes No need for warm-up stage
H H Gradient global norm
Gradient attenuation 35
------ PostNorm+LayerNorm
3.0 -+ PreNorm+ScaleNorm+FixNorm+NoWarmup — ‘—W =
- —— PreNorm+ScaleNorm+FixNorm 30 - ‘xg i i
ie] m Pre-LN (init) < 25 —- PreNorm+LayerNorm :
8 4 | ™= Post-LN (init) E 56
5 1. S 2 S
P} B Post-LN (after warm-up) =) 20
o S 15 -
w E m : =%+ Post-LN (RAdam w/o warm-up)
€05 g 1o 10 & =%= Pre-LN (RAdam w/o warm-up)
2 E x «-@+ Post-LN (Adam w/ warm-up)
g % 0.5 .,é' —e— Pre-LN (Adam w/o warm-up)
0
Co0 0 1 3 5 7 9 11 13 15
=0.5 TR LTI By [Epochs
0 200 400 600 800 1000 1200 I ‘N’
iteration (x100) (b) BLEU (SLT)

. L . . [Slide credit: Tatsu Hashimoto]
[Left and right from: On Layer Normalization in the Transformer Architecture, 2020]

&3 10HNS HOPEINS
o [middle from: Transformers without Tears: Improving the Normalization of Self-Attention, 2019] 38

Layer Norm vs RMSNorm

= QOriginal transformer: LayerNorm
o Normalizes the mean and variance across d.,;,4.; Notable models:
GPT3/2/1, OPT, GPT-], BLOOM

_ z—E[z] vt B
Y= v/ Var[z] + € 7
= Many modern LMs: RMSNorm
o Does not subtract mean or add a bias term Notable models:
X LLaMA-family, PaLM, Chinchilla, T5

y = *Y
11| +
X I &
2
[Slide credit: Tatsu Hashimoto]

@ lons 39

L

Why RMSNorm?

= Modern explanation — it's faster (and just as good).
o Fewer operations (no mean calculation)
o Fewer parameters (no bias term to store)

= Does this explanation make sense?

o Matrix multiplies are the vast majority of FLOPs (and memory)
o Non-matmul ops only make up 0.2% of our FLOPS

* So perhaps it doesn't matter that GPUs compute non-matmul ops slower.

Table 1. Proportions for operator classes in PyTorch.
Operator class % flop

% Runtime
"Tensor Contraction" := matmuls

A Tensor contraction 99.80 61.0
[Stat. normalization 0.17 25.5
O Element-wise 0.03 13.5

[Slide credit: Tatsu Hashimoto]

[Data Movement Is All You Need: A Case Study on Optimizing Transformers, 2020] 40

Why RMSNorm?

= RMSNorm runtime (and surprisingly, perf) gains have been seen in papers

Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 11.1T 3.50 2.18240.005 1.838 71.66 17.78 23.02 | 26.62
RMS Norm 223M 11.1T 3.68 2.167+0.008 1.821 75.45 17.94 24.07 | 27.14

[Slide credit: Tatsu Hashimoto]

[Do Transformer Modifications Transfer Across Implementations and Applications?, 2021] 41

=

Is the “bias” term
iINn FFNs necessary?

FFN(X) = f(XWl + bl)WZ + b2

|

42

The Bias Terms

= Most modern transformers don’t have bias terms.
o Original Transformer:

FFN(x) = f(xW; + b;))W, + b, W, € R,
and f was defined as ReLU: f(x) = max(0, x) W, € R%>xd

o Most implementations (if they’re not gated):

FEN(X) = f(XW)W,

= Reasons: memory (similar to RMSnorm) and optimization stability.

[Slide credit: Tatsu Hashimoto]

v - 43

Recap so far

= Basically, everyone does pre-norm.
o Intuition — keep the good parts of residual connections
o Observations — nicer gradient propagation, fewer spike

= Most people do RMSnorm
o In practice, works as well as LayerNorm
o But, has fewer parameters to move around, which saves on wallclock time

= Bijas term:

o People more generally drop bias terms since the compute/param tradeoffs are
not great.

[Slide credit: Tatsu Hashimoto]

44

[What activations f(.)
should we use?

FFN(X) = f(XWl + bl)WZ + b2

|

45

Activations

= No much consensus:
ReLU, GelLU, Swish, ELU, GLU, GeGLU, ReGLU, SelLU, SwiGLU, LiGLU, ...

oy
. |

46

Activations: RelLU vs GelL

RelLU:

FFN(x) = max(0,xW)W,

GelLU:

FFN(x) = GELUGW)W,

= {
T

L

Output

Output

RelU()

-6

-4

-2 0 2
GE LU(appro;(imatefnone')

4

6

d

Original transformer, T5,

Notable models:
Gopher, Chinchilla, OPT

d

GPT1/2/3, GPTJ, GPT-

Notable models:
Neox, BLOOM

[Slide credit: Tatsu Hashimoto]

47

GELU, in details

2.0

FFN(x) = GELU(xW)W,
GELU(y) = y®(y)

1.0

0o _./
-2 -1 0

= Here ®(y) the cumulative distribution function (CDF) of a normal distribution:

fz()4

d(y) = %(1 + erf (é))

area = O(x)

D(z)

/

1

E-N i
e JOHNS
-

48

Bonus

Activations: Gated activations (*GLU)

Gated activations modify the first part of the activations:
FFN(x) = max(0,xW)W,

Instead of a linear + ReLU, augment the above with an (entrywise) linear term:
max(0,xW;) - max(0,xW,) ® (xV)

This gives the gated variant (ReGLU) — note that we have an extra parameter V:
FFN(x) = (max(0,xW,) ® (xV))W,.

[Slide credit: Tatsu Hashimoto]
=

W e 49

Bonus

Activations: Gated activations variants

= GeGLU
FFNGeGLU(X; Wl) WZ) V) — (GELU(O, XWl) @ (XV))WZ .

Notable models:
T5v1.1, mT5, LaMDA

= SwiGLU: swish function is x * sigmoid(x):

FENgyicLy (X W1, Wo, V) = (Swish(0,xW;) © (xV))W,.

Notable models:
LLaMa, PaLM

= Note: Gated models use smaller dimensions for the d¢ by 2/3

[Slide credit: Tatsu Hashimoto]

50

Do Gated Linear Units work?

Bonus

_ _ Score | CoLA SST-2
= Yes, fairly consistently so. Average | MCC Ao
FFNReLU 83.80 51.32 94.04
FFNgeLU 83.86 53.48 94.04
FFNswish 83.60 49.79 93.69
FFNgLu 84.20 49.16 94.27
FFNgecLU 84.12 53.65 93.92
FFNBgilinear 83.79 51.02 94.38
FFNswicLu 84.36 51.59 93.92
FFNRecLU 84.67 | 56.16 94.38
[Raffel et al., 2019] 83.28 53.84 92.68
ibid. stddev. 0.235 1.111 0.569

[Slide credit: Tatsu Hashimoto]

51

https://arxiv.org/pdf/2002.05202

Bonus

Do gated linear units work?

= Yes, fairly consistently so.

Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ
Vanilla Transformer 223M 1115 3.50 2.182+0.005 1.838 71.66 17.78 23.02
GeLU 223M 1LY 3.8 2.179+0.003 1.838 75.79 17.86 25.13
Swish 223M 11.1T 3.62 2.186+0.003 1.847 73.77 1774 24.34
ELU 223M 1117 3.56 2.270 £ 0.007 1.932 67.83 16.73 23.02
GLU 223M 1110 3.59 2.174+0.003 1.814 74.20 17.42 24.34
GeGLU 223M 11.17T 3.55 2.130+0.006 1.792 75.96 18.27 24.87
ReGLU 223M 11.17T 3.57 2.145+0.004 1.803 76.17 18.36 24.87
SeLU 223M 11.1T 3.05 2.315+0.004 1.948 68.76 16.76 22.75
SwiGLU 223M {05 3.53 2.127+0.003 1.789 76.00 18.20 24.34
LiGLU 223M 11.1T 3.59 2.149+0.005 1.798 75.34 17.97 24.34
Sigmoid 223M 11.4T 3.63 2.291+0.019 1.867 74.31 17.51 23.02
Softplus 223M 1117 347 2207+ 0.011 1.850 72.45 17.65 24.34

[Slide credit: Tatsu Hashimoto]

52

B JouNs H

b [Do Transformer Modifications Transfer Across Implementations and Applications?, 2021]

Recap: Gating, activations

= Many variations (ReLU, GeLU, *GLU) across models.
= *GLU isnt necessary for a good model (see GPT3)

= But evidence points towards somewhat consistent gains from Swi/GeGLU

oy
ol

53

=

Serial vs Parallel layers

|

54

Serial vs Parallel Layer J Notable models:]

GPT3J, PaLM, GPT-NeoX

= Normal transformer blocks are serial — they compute attention, then the MLP
o Can they be parallelized? GPT-] introduced a simple change to do so!
III

= The standard “serial” formulation:
y = x + MLP(LayerNorm (x + Attention(LayerNorm(x)))

= The parallel formulation:
y = x + MLP(LayerNorm(x)) + Attention(LayerNorm(x))

o Note, LayerNorm can be shared, and matrix multiplies can be fused

= From PalM paper: "The parallel formulation results in roughly 15% faster training
speed at large scales ... Ablation experiments showed a small quality degradation at
8B scale but no quality degradation at 62B scale”

[PaLM: Scaling | Modeling with Patt 2022] s

https://arxiv.org/pdf/2204.02311

Recap

Pre-vs-post norm:
o Everyone does pre-norm (except OPT350M).

Layer vs RMSnorm:
o RMSnorm has clear compute wins, sometimes even performance.

Gating:
o GLUs seem generally better, though differences are small

Serial vs parallel layers:
o No extremely serious ablations; but parallel layers have a compute win.

56

=

Do you need all those keys?

Values

.[
{
{
-1
{
{
{
{

}
}
}
}“
}
}
}
}

|

57

Self-Attention layer variations

= We're going to discuss a few variations of standard self-attention that are motivated
by computational bottlenecks.

= Previously we talked about one bottleneck: # of arithmetic operations
= Now we're going to connect that to the # of read/writes from memory (10)

oy
. |

58

Diversion: Arithmetic Intensity

= Arithmetic Intensity of a program execution:
(# of floating-point operations) / (# of data bytes transferred to memory)

= It helps determine whether a program is compute-bound or memory-bound:
o If Al is high, performance is limited by how fast the GPU can compute.

o If Al is low, performance is constrained by how fast data can be transferred between global
memory and GPU cores.

= A good rule of thumb:
o Memory-bound: AI < 10 FLOPs/byte
o Balanced: 10 < AI < 100 FLOPs/byte
o Compute-bound: AI > 100 FLOPs/byte

59

Quiz

= If a GPU kernel has high arithmetic intensity, which of the following is true?
o A) Performance is mostly limited by memory bandwidth
o B) Performance is mostly limited by compute throughput
o C) Memory accesses dominate execution time
o D) The workload is not well-suited for GPUs

= Answer: High Al means the GPU spends more time computing per byte of memory
fetched, making it compute-bound rather than memory-bound. Hence, B.

60

Arithmetic Intensity: An example

= We are going to compute Al for the first operation in Self-Attention.
= Note we assume that the full input sequence is given at once (e.g., training time).

d
= Given: x € RP*™¢ Wi e R**m we want to compute: xW . From last week:

x € RXmxd Wi e RPm XW/, XW[', xW/” for m heads 0(bnd?) 0(d? + 2bnd)

aloof bnd® \ _ [(@ +26md\) _ 1,2\
7 \d?+2bnd) bnd? B bn d

ti-l-| HRS HOWPE TS
% 61

Quiz
d
= Given: x € RP>™ 4, Wi € R*m we know that the Al for computing xW/ is:

S

= This processis___ ?
o Memory-bound
o Balanced
o Compute-bound

= Answer: Our Al is large-ish. Depending on hyperparams, this is either balanced or
compute-bound.

o If n =10 (sent len), b = 10 (batch size), d = 512 (hidden dim). Then Al = 71.
o If n =30 (sent len), b = 20 (batch size), d = 512 (hidden dim). Then Al = 179.

62

Arithmetic Intensity of Training
Self-Attention

xW, xW¥, xW? for m heads 0(bnd?) 0(d? + 2bnd) (b+ 1/bn)
P; « softmax(ﬂ) for m heads 0(bn?d 0(2bnd + bmn? 0 (m +1/) B
i fam (bn“d) (2bn mn?) /d o
-1
head; < P,V; for m heads 0(bn2d) 0(2bnd + bmn?) 0 ((m +n))
-1
Y = Concat(head. head._ YWY ()(bndz) 0(2bnd + dZ) 0 ((1 1/bn))
b: batch size,
n: sequence length, -1
m: number of heads L@ All these AI values are large! 0 (1/d 1/bn)
d: feature dimension in output of SA We can continue running our

d/m: feature dimension inside each SA head . GPUs during training! 3
d¢ = 4d: feature dimension inside FFN 63

https://le.qun.ch/en/blog/2023/05/13/transformer-batching/

Self-Attention Cost of Computation During sons |
Incremental (Autoregressive) Generation

= Note that these numbers involve KV-caching.

xW?, xW¥, xW? for m heads 0(bd?) 0(d? + 2bd) 0 ((1/d 4 1/b)_1>
Kl'hese two rows have low AI. For example, if n = 20 (sent len), ((1 +M/)+ 1/n) 1)
h = 12 (num heads), d = 512 (hidden dim), then AI = 0.93.
Hence, our program is memory bound during inference! {+J <(1 YRR) 1)
Note this is partly due to the memory-bandwidth cost of a’ n
N repeatedly loading the large "keys" and "values" tensors. (1/ 1/)
COUTICOCCITCOYT,) vov) ITCOAT VY oo J AN L= AT By | d b
b: batch size,
n: sequence length thus far, 0(16bd?) 0(2bd + 8d?) (1/d 1/b)
m: number of heads

d: feature dimension in output of SA
d¢ = 4d: feature dimension inside FFN

KV-Cache drag

= Slowdown of autoregressive decoding.
o As the sequence length grows, KV cache size increases, making cache lookup slower.
o As we generate more output tokens (i.e. chatbot responding to user), throughput will slow

down.
Batch Size: Sequence Length:
= For GPT2, this comes out to a modest ~36 MB assuming 1 1024
we use the max sequence length of 1024 tokens and a
batch size of 1. For larger models, however, the KV Model Parameter Count KV Cache Size
Cache can take up GBs of memory.
. GPT-3 Small 125M 36.000 MB
o Try this calculator:
GPT-3 Medium 350M 96.000 MB
= Simple idea: Retain only the last L tokens of the GPT-3 Large 760M 142000 1B
KV-cache and compute attention using these recent tokens: PTaxL a8 255,000 M

o, Inference cost will be constant 0(L) per token.

GPT-32.7B 2.7B 320.000 MB

https://tinkerd.net/blog/machine-learning/multi-query-attention/

The (-

cat

sat

on

the |

Sparse / sliding window attention

= Right: Build sparse / structured attention that trades off expressiveness vs runtime.
= Left: Just use the main part of the strided pattern — let depth extend effective context (Mistral)

The cat sat on the The cat sat on the

i
Layers
Tokens u
Vanilla Attention Sliding Window Attention Effective Context Length I [
(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)
Notable models:
GPT3 and Mistral

= PR TRIC . .

&7 JOHNS HOPKIN [Generating Long Sequences with Sparse Transformers, 2019] 67

https://arxiv.org/abs/1904.10509

Quiz

= What are the drawbacks of sliding window?
1. If the model was not trained for sliding window, generation will be out-
of-distribution and unstable.
2.If uses few layers, it'll retains local/recent information and cannot see
global context.
3. After a while, it will forget the input text (e.g. the original instruction
provided by the user).

4. All of the above.

68

Sliding Window Attention with “Sinks”

= Idea: We should better retain the initial tokens
o Intuition: The model should hold on to the user prompt which
kickstarted/instructed the LLM’s decoding
o During training: The model always relies on tokens at initial positions.
« We can't suddenly remove initial positions 1, 2, 3, ... during inference.

« Removing them results in a less stable inference (position encodinas become OOD).

(c) Sliding Window (d) StreamingLLM (ours)

(b) Window Attention w/ Re-computation

! T] N 11 i] I I AT RN
Window T Window [T TTLLI Always
positions L 1] positions -] maintains
move [reset to init "1 init tokens |7
. —N
Attention Sink
E L T are truncated . -
T-L evicted L cached L re-computed . &
-« tokens >+ lf)‘l::n: - - :;k:m > "f;;f::* th,icxd
2
O(TL)v PPL:5158x O(TL“)x PPL:5.43v O(TL)v PPL:540v
Breaks when initial Has to re-compute cache Can perform efficient and stable
tokens are evicted. for each incoming token. language modeling on long texts.

[Slide credit: Samet Oymak]

== B : H C
Qe [Efficient Streaming Language Models with Attention Sinks, 2023] 70

https://arxiv.org/abs/2309.17453

Sliding Window Attention with “Sinks”

= Standard Sliding Window Attention does work well but it requires re-computation
of KV cache to reset window’s positional encodings back to initial positions.

= StreamingLLM avoids this by always maintaining few initial positions (referred to as
sinks).

o Keeping initial tokens results in faster and more stable inference

(c) Sliding Window

(b) Window Attention w/ Re-computation

(d) StreamingLLM (ours)

Window m [Window [T 111l Alwayg 5
positions 1) positions [maintains
move I || reset to init " T"] init tokens

o

Attention Sink

Juifory
-1 previous tokens
SR are truncated

T-L evicted L cached L re-computed T T
* tokens T tokens " wkens +* f;;fclm e l::ccm
)
O(TL)v PPL:5158x O(TL“)x PPL:5.43v O(TL)v PPL:540v
Breaks when initial Has to re-compute cache Can perform efficient and stable
tokens are evicted. for each incoming token. language modeling on long texts.

[Slide credit: Samet Oymak]

https://arxiv.org/abs/2309.17453

Multi-Query Attention (MQA)

= The idea is to reduce the memory-bandwidth cost of repeatedly loading the large
"keys" and "values" tensors.

= Key idea — have multiple queries, but just one dimension for keys and values.

Values

Keys

Queries

L

=

}..

Multi-head

{

i

Multi-query

!

Jaononn

Small PPL w/ MQA [Shazeer 2019]

Attention h dy,d, dff dev-PPL
multi-head 8 128 8192 29.9
multi-query 8 128 9088 30.2
multi-head 1 128 9984 31.2
multi-head 2 64 9984 31.1
multi-head 4 32 9984 31.0
multi-head 8 16 9984 30.9

https://arxiv.org/pdf/1911.02150

MQA In practice

Independent queries, but shared keys and values

14 self.W_g = nn.Linear(embed_dim, embed_dim, bias=False) # Queries

15 self.W_kv = nn.Linear(embed_dim, 2 x self.head_dim, bias=False) # Shared Key and Value
16

17 self.out_proj = nn.Linear(embed_dim, embed_dim)

def forward(self, x):
batch_size, seq_len, _ = x.shape

Compute Queries (B, L, D) - (B, L, H, D/H) - (B, H, L, D/H)
Q = self.W_g(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

Compute shared Keys and Values (B, L, D) - (B, L, 2 x (D/H)) - (B, 1, L, D/H)
KV = self.W_kv(x).view(batch_size, seq_len, 2, self.head_dim).permute(2, 0, 1, 3)
K, V = KV[@].unsqueeze(1), KV[1].unsqueeze(1l) # Shared across all heads

Scaled Dot-Product Attention

attn_weights = torch.einsum("bhqd, bkhd—>bhgk", Q, K) / (self.head_dim %% 0.5)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

output = torch.einsum("bhgk, bkhd—>bhqd", attn_weights, V)

Merge heads and apply output projection ESCTHQt
output = output.transpose(1, 2).reshape(batch_size, seq_len, self.embed_dim)

L= R return self.out_proj(output) 73

https://gist.github.com/danyaljj/27beda96053623a7499070fa4019c2a4

Grouped Query-Attention (GQA) | uaes o)

= An interpolation between “"multi-head” attention and “multi-query” attention.

Multi-head Grouped-query Multi-query

Values

- JUODOOOD U U U i}

—
{

(0000000 00000000 0E0000ON

= Simple knob to control expressiveness (key-query ratio) and inference efficiency

}
}
}
}
}
}

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023 74

Grouped-query

Grouped Query-Attention (GQA) e

= Does it actually work? Depends. DDDUDDDD
Output quality of various models; all these Inference speed as a function of GQA group size — 8
SA variants are on-par on quality. heads gives you inference speed as good as 1 head!
Model | WMT 'I'riviaQA @ AR AR R R R RRRRRIRRRIRRRRIRRRRURRRRIRRRTRABN
[0}
| BLEU F1 g 2 | aes MHA
MHA-Large | 27.7 782 AN ﬁ%‘;
MHA-XXL 28.4 81.9 &
MQA-XXL 28.5 81.3 £
GQA_S_XXL 28'4 81-6 = ?c-:(ii-)j-:'-i-’rni-:ﬂl:m FfieeSAEEEEEEEEEEEN
1 4 8 16 32 64
GQA groups

GQA: Training generalized multi-query transformer models from multi-head checkpoints, 2023 75

Recap

= SA’s Al during inference is not good.
o We're doing a lot of IO relative to computations (KV drag).

= Sliding window attention: sparsifying attention pattern by looking at nearby things.

= MQA and GQA: sharing attention keys and values.

77

=

Parameter tying

|

Embedding parameter tying

layer.

class TransformerWithTiedEmbeddings(nn.Module):
def __init_ (self, vocab_size, d_model):
super().__init_ ()
self.embedding = nn.Embedding(vocab_size, d_model)
self.transformer = nn.Transformer(d_model=d_model)
self.output_layer = nn.Linear(d_model, vocab_size)

Tying embeddings

(0000]

The same weight matrix is used for both the input embeddings and the output (projection)

softmax

0]0/0/00/0000;

/

self.output_layer.weight = self.embedding.weight

Why?
o Theoretical justification: The input and output

Neural
network

embeddings should exist in the same space.
o Memory Efficiency: reduce the # of trainable params.

o Improved Generalization: It enforces consistency between
input vs output — the same representations are used in both I
-encoding and decoding.

Using the C Embedd | | Models. 2017

0000

0000

saw ..

0000

]

Output word
embeddings

the same
parameters

<— Input word
embeddings

79

https://arxiv.org/pdf/1608.05859

[

s there a better way to encode
positional information? N

80

Positional Embeddings: The Flavors

Notable models: }

= Sine embeddings: add sines and cosines that enable localization { Original Transformer

Embed (x,i) = vy + PEpos

PE(pos 2i) = .‘a‘r'.n.(,m.a:a'/]UUUUH’{d""““‘l)
PE (pos 2i+1) = C08(pos/10000%/ o)

O O | — 1 | |
o) o Allows model to learn }

relative positioning

p; are positional
embeddings

/B :
‘00000 | 00000 ‘00000
Pl 60000 | "I 00000 | P*[00000 | P4 50000

¥ o X1 X2 X3 X4 81

Positional Embeddings: The Flavors

oy
. |

Notable models:

Sine embeddings: add sines and cosines that enable localization { Original Transformer

|

Embed(x,i) = vy + PEpqs

PE(pos 2i) = sin(pos/1 000(2%/ dmoser)
PE(pos,2i+1) = cos(pos/1 0000/ dmode)

inas: " h i Notable models:
Absolute embeddings: add a position vector to the embedding { GPTL/2/3 - OPT

|

Embed(x,i) = vy + u;

Limitations:
o We can have fixed encoding for each index training position (e.g., 1, 2, 3, ... 1000).
o What happens if we get a sequence with 5000 words at test time?

We want something that can generalize to arbitrary sequence lengths.

82

Positional Embeddings: The Flavors

oy
Al

Sine embeddings: add sines and cosines that enable localization

= Sine embeddings: add sines and cosines that enable localization

= Absolute embeddings: add a position vector to the embedding

» Relative embeddings: add a vector to the attention computation
QKyj = x[W, Wx; + Py

o Intuition: encoding the relative positions, for example based on the distance of the tokens in
a local window to the current token.

Relative embeddings: add a vector to the attention computation
QKU = x’{WqTka]' + Pl]

<

Notable models:
Original Transformer

Notable models:
GPT1/2/3 - OPT

J

<

Notable models:
T5, Gopher, Chinchilla)

o Intuition: encoding the relative positions, for example based on the distance of the tokens in

a local window to the current token.

83

A Unified Perspective on
Relative Positional Encoding

= You can rewrite the statement from the previous slide in the following form:
QKU = x’lquTka]' + Pl]

RoBERTa) GPT2) sinusoid

o C [=] o

3 E] =

o =] =} o

R R e R

o 8 L= (=]

= A 2]

o e =] o

B T 2 g

o =1 = o

= X [=] =]

N 100 200 300 400 500 0 100 200 300 400 500 20 200 400 600 800 1000 N o 100 200 300 400 500

[B
: . : ! k ! I | E :

—050-0.25 000 025 050 075 100 0.0 0.2 04 06 08 1.0 -05 0.0 05 10 04 06 08

|
10

84

A Unified Perspective on
Relative Positional Encoding

= \We are input sequence x,, x4, ... and
o Then the unnormalized attention valt%e between position i, and j is:
QKij = (Wyxi) (Wiexj) = x{ Wi Wyx;
= Now also assume that positional embeddings are added to x;, i.e., they're x; + p;
T
QK;; = (W, [x;+pi]) (W [xj+pj]) = x] W, Wyxj + x] W, Wyp;+p{ W," Wyxj+ p{ W, W;p;

The original attention term: How much attention How much attention
how much attention should we should we pay to word x | | should position p; should
pay to word x; given word X; given the position p attend to position p;

@ lons 8

Relative Positional Encoding

= There have been various choices:
o T5 models simplify this into learnable relative embeddings P;; such that:
QKU - x?WqTka]- + Pl]

o DeBERTa learns relative positional embeddings p;_; such that:
QKij = xi W,"Wyxj + x] W, Wy, D;_ ;i +D]_ W, Wyx;

o Tranformer-XL learns relative positional embeddings p;_; and trainable vectors u, v s.t.
QK;; = x] W, " Wyxj + xI W, Wy, B, j+u" W, Wx; 40" W, W, B,

o ALIBi learns learns a scalar m such that:
QK;j = xiTWqTkaj —m i —j|

53 | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020
w Train Short, Test Long: Attention with Linear Biads2es Enables Input Length Extrapolation (2022) 87

Recap

Sine embeddings: add sines and cosines that enable localization { ezl e }

Original Transformer

Notable models:
GPT1/2/3 - OPT

Absolute embeddings: add a position vector to the embedding {

J

\

Notable models:

Relative embeddings: add a vector to the attention computation | T5, Gopher,
Chinchilla, Deberta

Tranformer-XL,)

ROPE embeddings: (next slide) {ggi?b;eLnl\)locLlfI;:A }
, PaLM, LLa

88

Rotary Positional Encoding (RoPE)

= We want our embeddings to be invariant to absolute position.
= We know that inner products are invariant to arbitrary rotation.

we we
know
know we KNow
\h
Position independent Embedding) Embedding)
embedding “of course we know” we know that
Rotate by ‘2 positions’ Rotate by ‘0 positions’

[Slide credit: Tatsu Hashimoto]

@ lons 89

Thinking About Rotation Matrix

= In 2D, a rotation matrix can be defined in the following form:

cosmf —sin m@)

R, . =
6.m (sian cos mb

= The rotation increases with increasing 6 and m.

90

Rotary Positional Encoding (RoPE)

= Drop the additive positional encoding and make E
it multiplicative.

Token representations
at positions m and n

qkmn = (RQ,m qum)T(RQ,n kan)

= me WqT Rg,m Rg,n Wk x]' : _— Non-rotated query and key

(no position information)

o 8: the size of rotation i R iR
o Ry,,: rotation matrix, rotates a vector it gets A M
multiplied to proportional to 6 and the T\B 0 e sy and e
pOS|t|On |ndeX m. ' : (absolute position information)
= Intuition: nearby words have smaller relative -
rotation. i i
q k =g(x X ,n—m) Getative postion miowretion)
f‘{P_Former: Enhanced Transformer with Rotary Position Embedding (2022) Fi 91

https://colab.research.google.com/github/krasserm/krasserm.github.io/blob/master/notebooks/2022-12-13-rotary-position-embedding.ipynb

Thinking About Rotation Matrix

= In practice, we are rotating d dimensional embedding matrices.

= Idea: rotate different dimensions with different angles:
O @ - {90, 91, 92, 93, ey Hd/z}

(costf; —sinth; 0 0 0 0)
sintf; costo, 0 0 0 0
0 0 costf, —sintb, 0 0
R, =] O 0 sintf, cos th, 0 0
0 0 0 0 <« coStlyp —sintlyy
. 0 0 0 0 -+ sintly, costl,p)

E-N
=

L e 92

Bonus

ROPE in its General Form

_ (pd Trna
Qkmn = (RG),mVqum) (RG,kaxn)'
= where R§,, is a d-dimensional rotation matrix.

= Since Rg,m is @ sparce matrix, its multiplication is implemented via dense operations:

(u; Y\ (cosmb;) (—-uw) ([sintf;)
U cos 10, U sin 10,
Uz cos 10, —Uy sin 16,
Réf),tu =| us |®| costbh, |+| u3 |®| sintH,
Ug_1 cos 10, —Ug sin 104,
@ omnon \ uq) \costlyp) \uq—1) \sintlyp,) E

Bonus

Implementation and code for ROPE

query_states = self.q_proj(hidden_states)
key states = self.k proj(hidden_states)
value states = self.v proj(hidden_ states)

Usual # Flash attention requires the input to have the shape
attention stuff # batch_size x seq_length x head_dim x hidden_dim

therefore we just need to keep the original shape

query_states = query_states.view(bsz, g_len, self.num_heads, self.head_dim).transpose(1, 2)

key_states = key_states.view(bsz, qg_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

value_states = value_states.view(bsz, g_len, self.num_key value_heads, self.head_dim).transpose(1l, 2)
Get the RoPE

matrix COS/SII'I \ cos, sin = self.rotary_emb(value_states, position_ids)

query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

Multiply
query/key inputs

Same stuff as the usual multi-head self attention below

= Note: embedding at each attention operation to enforce position invariance

i I
W JOH

[Slide credit: Tatsu Hashimoto]

94

Recap

Sine embeddings: add sines and cosines that enable localization { ezl e }

Original Transformer

Notable models:
GPT1/2/3 - OPT

Absolute embeddings: add a position vector to the embedding {

J

\

Notable models:

Relative embeddings: add a vector to the attention computation | T5, Gopher,
Chinchilla, Deberta

Tranformer-XL,)

ROPE embeddings: uses rotations to encode relative distances. Notable models:
GPT], PaLM, LLaMA

95

=

Which overall architecture
should I use?

|

Architectures: Different Choices

Prefix LM

SIS Exploring the limits of transfer learing with text-to-text transfer transformers, 2020

Bonus

97

Bonus

Architectures: Different Attention Masks

= Fully visible mask allows the self attention mechanism to attend to the full input.

= A causal mask doesn't allow output elements to look into the future.
= Causal mask with prefix allows to fully-visible masking on a portion of input.

Fully-visible

g []

Causal

q [[
q .
g | | e
d e

 aase

1

DC]C]

ngmdl
Y,

Prefix

X X3 Y
%, %3 %y

X X2 X3 X4 X5
Input —

LM

os
0
58

Causal with prefix

q []
q .
g | | e
d | e
4 . aa

X, X3 X, Xg

1
<~ Input ——

Exploring the limits of transfer Iearnlng with text-to-text transfer transformers, 2020

98

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Q7 O TIOPKINS Exploring the limits of transfer leatmintwita te%t-to-text transfer transformers, 2020 99

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

T

[
Input: Thank you for <X> me to your party
<Y>. Target: <X> inviting <Y> last week.

L -
()
O ST
O ’\\o‘:o‘"o:'o//
o |
c

o) Exploring the limits of transfer leatmintwita te%t-to-text transfer transformers, 2020 100

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
/
Number of
parameters

50

Q7 O TIOPKINS Exploring the limits of transfer leatmintwita te%t-to-text transfer transformers, 2020 101

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Number of FLOPS

50

Q7 O TIOPKINS Exploring the limits of transfer leatmintwita te%t-to-text transfer transformers, 2020 102

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Q7 O TIOPKINS Exploring the limits of transfer leatmintwita te%t-to-text transfer transformers, 2020 103

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95

Decoder
=
-~

Encoder
X

&2 101N H

W 7 mormokmn, Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 104

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model

X5 X3 Y5 Y

2

&3 loHNS H

HNS HOPKINS : - X, Xy X3 Y, Y,
< Exploring the limits of transfer learning with fext-to-tekt transfer transformers, 2020 105

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model is decoder-only Language model

&2 101N H

HNS HOPKINS : . X, X, X3 Y, Y,
o Exploring the limits of transfer learning with fext-lo-tekt transfer transformers, 2020 106

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P /M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model

G X ¥y Yo

LM looks at both input and target, while ;]
encoder only looks at input sequence and =
=7 |/

decoder looks at output sequence.

JOHNS H 5 . . X1 Xz. X y yz
o Exploring the limits of transfer learning with fext-lo-tekt transfer transformers, 2020 107

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective ~Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2r M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising i 2 M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising i M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 3528 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Prefix LM
X

2 x3 y1 y2 :

==

=
TR

et wven Exploring the limits of transfer ledtnind‘avitf2ex¥to-%xt transfer transformers, 2020 108

A

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective ~Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2r M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
(Enc-dec, shared Denoising i 2 M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39

= Takeaways:
1. Halving the number of layers in encoder and decoder hurts the performance.

E-N
£ |

Q7 O TIOPKINS Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 109

Architectural Variants: Experiments

Evaluated for classification tasks.

Architecture Objective ~Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Encoder-decoder Denoising 2r M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising i 2 M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39

= Takeaways:

1. Halving the number of layers in encoder and decoder hurts the performance.
2. Performance of Enc-Dec with shared params is almost on-par with prefix LM.

o ‘ Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 110

=

Overall architecture

|

Architecture Hyperparams

There are a ton of question regarding architecture hyperparameters:

= How much bigger should the feedforward size be compared to hidden size?
= How many heads? Should # of heads always divide hidden size?

= Should we make our model wide or deep?

oy
. |

112

The Surprising Consensus #1.:
FFN Dimension Ratio

= Feedforward — model dimension ratio:

FFN(X) = f(XWl + bl)WZ + bz
Wl € [Rd)(dff’
W2 = Rdff)(d

= There are two dimensions that are relevant — the feedforward dim (d¢) and model
dim (d). What should their relationship be?

dff == 4d

= This is almost always true. There’s just a few exceptions.

[Slide credit: Tatsu Hashimoto]

SV I I 113

Why this range of multipliers?

= Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal.

Loss Increase

10%

8%

6%

4%

2%

0%

—— fpead = 8

rnodel/Mhead = 64

/

_/.f

o

100

10!

Feed-Forward Ratio (ds / dmodel)

50M Parameters

[Slide credit: Tatsu Hashimoto]
114

https://arxiv.org/pdf/2001.08361

| |
Exception #1 — GLU/Gated variants

= Remember that GLU variants scale down by 2/3 rd. This means most GLU variants
have d¢ = g x d. This is mostly what happens. Some notable such examples:

Model | dyy/dmodel

PaLM 4
Mistral 7B 35
LLaMA-2 70B 3.5
LLaMA 70B 2.68
Qwen 14B 2.67
DeepSeek 67B 2.68
Yi 34B 2.85
T5vl.1 2.5

= Models are roughly in this range, though PaLM, LLaMA2 and Mistral are slig”r(};clcxdilar er

t: TafSu Hashimoto]
r.. .l

" 115

|
Exception #2 -T5

As we have (and will) see, most LMs have boring, conservative hyperparameters.
One exception is T5 [Raffel et al 2020] which has some very bold settings.

In particular, for the 11B model, they set dsf = 65,536
d =1024

For an astounding 64-times multiplier.

for “11B” we use dg = 65,536 with 128-headed attention
producing a model with about 11 billion parameters. We chose to scale up dg
specifically because modern accelerators (such as the TPUs we train our models
on) are most efficient for large dense matrix multiplications like those in the
Transformer’s feed-forward networks.

[Slide credit: Tatsu Hashimoto]

=
e

=¥ a 116

The Surprising Consensus #2:
Model Dimension Ratio

Remember: head; = Attention(xW/, xW}, xW})
MultiHeadedAttention(x) = Concat(heady, ..., head,) W?

In practice, we use a reduced dimension for each head.

d d d
w! e R"%, WFeRPR, WY eRYR, w0 eRxd

The consensus: dim of head (%) X num-heads (h) = model-dim (d)

This doesn’t have to be true: we can have head-dimensions > model-dim / hum-
heads. The matrix (W) can take care of projection to model-dim.

o But most models do follow this guideline

; _ [Slide credit: Tatsu Hashimoto]
& H 117

Heads vs model dim

= Some examples of this hyperparameter:

num-heads x head-dim / model-dim

—mm

GPT3
15
T5vl1.1
LaMDA
PaLM
LLaMA2

128
64
128
48
64

128
64

128
258
128

12288

1024 16
4096 1
8192 2
18432 1.48
8192 1

= Most models have ratios around 1 — notable exceptions by some google models.

E-N
]
ol

[Slide credit: Tatsu Hashimoto]
118

Bonus

Aspect radios

= Should my model be deep or wide? How deep and how wide?
= Most models are surprisingly consistent on this one too!

Model | dumodet/Miayer

BLOOM 205
T5vl.l 171
PaLM (540B) 156
Sweet spot? GPT3/OPT/Mistral/Qwen 128
LLaMA / LLaMA2 / 102
Chinchila
T5 (11B) 43
GPT2 33

_= Note here width is the hidden dimension, not the context window width. sice credit: Tatsu Hashimotol
L ' Raaited-l 119

L

Considerations about aspect ratio

= Extremely deep models are harder to parallelize

The Limits of Depth vs Width We note an obvious limitation with our advice. Scaling depth has
an obvious limiter, i.e., they are non-parallelizable across different machines or devices and every
computation has to always wait for the previous layer. This is unlike width, which can be easily
parallelizable over thousands or hundreds of thousands of devices. Within the limitation of scaling

[Tay et al 2021]

forward
I » g o
Layer Layer Layer Layer
0 1 2 3
‘backward) X
GPU O GPU 1 GPU 2 GPU 3

[Slide credit: Tatsu Hashimoto]

E-N
=0T

Q) JoHNs H 3 120

Evidence on aspect ratio scaling

Al

Wide range of ‘good’ values (100-200)

—e— 50M Params
s 274M Params
—+— 1.5B Params

/‘/'/
/

A wide range of architectures /
achieve similar performance 4

/

,

&3 [oHNS HOM

10! 102 103
Aspect Ratio (Jmodel / Niayer)

[Kaplan et al 2020]

Scaling Laws for Neural Language Models, 2020

[Slide credit: Tatsu Hashimoto]
121

https://arxiv.org/pdf/2001.08361

Recap of architecture hyperparams

= Feedforward dimension / model dimension
o Factor-of-4 rule of thumb (8/3 for GLUSs) is standard (with some evidence)

= Head dim
o Head dim*Num head = D model is standard — but not much validation

= Aspect ratio
o Wide range of ‘good’ values (100-200). Systems concerns dictate the value.

[Slide credit: Tatsu Hashimoto]
122

oy
. |

Tokenizers

What Tokenizers do people use?

= The non-google world uses BPE. Google uses the SentencePiece library, which
(sometimes) refers to a non-BPE subword tokenizer

I

Original BPE
transformer
GPT 1/2/3 BPE

T5/mT5/T5vl.1 SentencePiece (Unigram)
Gopher/Chinchilla SentencePiece (2??)

PaLM SentencePiece (7?)
LLaMA BPE

= Important property — all of these tokenizers are mostly* invertible.

=709 .except the ones that do lowercasing and aggressive normalization <<= Ta“““aslhzfzoto]

What are typical vocabulary sizes?

Monolingual models — 30-50k vocab Multilingual / production systems 100-250k

T e —
mT5

250000
Original 37000
transformer PaLM 256000
GPT 40257 GPT4 100276
GPT2/3 50257 BLOOM 250680
T5/T5v1.1 32128 DeepSeek 100000
LLaMA 32000 Qwen 15B 152064
Yi 64000
21 1y i Monolingual vocabs don’t need to be huge, but multilingual ones do ~ [/19e credit: Tatsu Hashimotol

L L 125

Dealing with white spaces

Multi-whitespace
tokenization (GPT-NeoX)

GPT-2

def| fibRec/(] :}k—
L[] if] of < 2:—
:]ql.“eturn] nk

|| [] return] fibRed(H-D[+ fibRec[(nH2))|

55 tokens

GPT-NeoX-20B

def] fibRed() :k—
EEEEI=
return| n—
lelsel:l—

return fibRed(n-1)| H fibRec(n-2))

39 tokens

[Slide credit: Tatsu Hashimoto]
126

Dealing with numbers

3.141592653589793238462643383279502884197169399
37510582097494459230781640628620899862803482534
117067982148086513282306647093844609550582231725
359408128481117450284102701938521105559644622948
0954930381964428810975665933446128475648233786783
165271201909145648566923460348610454326648213393
607260249141273724587006606315588174881520920962

GPT-4 and GPT-4o0 tokenizers broke down
~_numerical sequences into groups of 3.

Mixral, Llama, DeepSeek, and Gemma
tokenizers broke down numerical sequences
into a separate token for each digit.

<b05>3.14159265358979323846264338327950288419716
93993751058209749445923078164062862089986280348
534211706798214808651328230664709384460955058223
172535940812848111745028410270193852110555964462
294895493038196442881097566593344612847564823378
678316527120190914564856692346034861045432664821
339360726024914127372458700660631558817488152092

Tokenizer. We tokenize the data with the byte-
pair encoding (BPE) algorithm (Sennrich et al.,
2015), using the implementation from Sentence-
Piece (Kudo and Richardson, 2018). Notably, we
split all numbers into individual digits, and fallback
to bytes to decompose unknown UTF-8 characters.

« : https://mww.artfish.ai/p/how-would-you-tokenize-or-break-down 127

Tokenizers

= Everyone uses invertible subword tokenizers (BPE, Unigram) for good reason.

= For math and code, careful manual handling of whitespace and numbers can help.

— [Slide credit: Tatsu Hashimoto]
& . 129

ummary of LLM architectures

= There are many architectural variations.
= Major differences? Position embeddings, activations, tokenization
= This is an evolving field; a lot of empirical analysis is going into identifying best practices.

Original transformer anxiv.org BPE 37000 [LayerNorm Sine

GPT cdn.openai.com BPE 40257 | LayerNorm Absolute
GPT2 cdn.openai.com BPE 50257 | LayerNorm Sine
T5 (11B) arxiv.org SentencePiece 32128 RMSNorm Relative
GPT3 (175B) arxiv.org BPE 50257 |LayerNorm Sine
mT5 arxiv.org SentencePiece 250000 RMSNorm Relative
T5 (XXL 11B) v1.1 d github.com SentencePiece 32128 RMSNorm Relative
Gopher (280B) arxiv.org SentencePiece 32000 RMSNorm
Anthropic LM (not claude) anxiv.org BPE 65536

LaMDA arxiv.org BPE 32000 Relative GeGLU
GPTJ i huggingface.co, BPE 50257 |LayerNorm Parallel RoPE GelU
Chinchilla arxiv.org SentencePiece 32000 RMSNorm Serial Relative ReLU

PaLM (540B) arxiv.org SentencePiece 256000 RMSNorm Parallel RoPE SwiGLU

I S S N EENEEEEEOO

OPT (175B) anxiv.org BPE 50272 |LayerNorm Serial Absolute ReLU

BLOOM (1758B) arxiv.org BPE 250680 |LayerNorm Serial AliBi
GPT-NeoX arxiv.org BPE 50257 [LayerNorm Parallel RoPE
GPT4 . arxiv.org 100000

LLaMA (65B) arxiv.org 32000 RMSNorm SwiGLU

LLaMA2 (70B) arxiv.org 32000 RMSNorm SwiGLU

B BB EEE B R EEE B R B 2 @R E] &) E

E EEONN

Mistral (78B) arxiv.org 32000 RMSNorm SwiGLU

[Picture credit: Tatsu Hashimoto

Pre-training language models:

Pre-training data

The pre-training data size and sources

Pre-training data

- They Vary Model Name | Release #Tokens Training Dataset
quite a bit! BERT 2018 3.3B BooksCorpus (800M), English Wikipedia (2.5B)
GPT-1 2018 13B BooksCorpus
GPT-2 2019 40B WebText: scraping outbound links from Reddit post with >= 3 karma
" They Used tO be T5 2019 34B C4 which is the cleaned up version of CommonCrawl
in billions of tokens; R 2020 4008 Common Crawl (filtered), WebText2, Myrstry books!! (Books1,
now they’re north Books2), Wikipedia
Of triIIions. Gopher 2021 1.4T MassiveText _
BLOOM | 2022 0B | curces in 46 natural and 13 programming languages (59 in otal)
PaLM 2022 2.81T Web documents, books, Wikipedia, conversations, GitHub code
LaMDA 2022 1.66T Public dialog data and web documents
Chinchilla 2022 1.4T MassiveText
LLaMA2 2023 2.0T A new mix of publicly available online data
GPT-4 2023 ? ?
Claude-3 2023 ? ?
OLMo 2 2024 5.6T OLMo-Mix-1124(stage1) + Dolmino-Mix-1124(stage 2)
Qwen2.5 2024 7T
= DeepSeek (V3)| 2024 14.8T GitHub’s Markdown and StackExchange
v : LLaMA3 2024 15T A new mix of publicly available online data

Where do we begin to collect data?

= Where do I find a very large dataset?
o Crawling web is non-trivial (unless you're OpenAl or Google with ton of resources).

o But if you have to do it, be aware that websites have their own permissions
regarding which parts of their content, if any, can be crawled. (next slide)

o The alternative is to look for websites that have done the crawling for you.

&) , 133

Robots.txt

NO

ENTRY

= A plain text file that tells web crawlers which parts of a website they can access.
= When a web crawler visits a website, it first checks the robots.txt file (if available)

before crawling other pages.

User-Agent: * h ‘_ User-agent:
a User-agent:
= User-agent:
iﬂ T?"r, e—rry User-agent:
Disallow:/file.html a l Disallow:/image.png ‘ User-agent

| ! ! User-agent:
User-agent:
User-agent:

= Al companies release the details of their crawlers: User-agent:
https://platform.openai.com/docs/bots/ Disallow: /

Squarespace Robots Txt

GPTBot

ChatGPT-User

CCBot

anthropic-ai
Google-Extended
AdsBot-Google
AdsBot-Google-Mobile
AdsBot-Google-Mobile-Apps

*

More examples:
https://www.youtube,com/robots.txt
https://www.jhu.edu/robots.txt

134

https://platform.openai.com/docs/bots/
https://github.com/ai-robots-txt/ai.robots.txt
https://www.youtube.com/robots.txt
https://www.jhu.edu/robots.txt

Robots.txt’'s are becoming
increasingly more restrictive

= A longitudinal analyses show that in the past few years, a major chunk of websites
have restricted their data to AI crawlers.

20% —
10'34: . Forecast
0% 1 T T I | T
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Robots.txt Restrictions
@ Full restrictions ® Pattern-based restrictions Disallow private directories Other restrictions Crawl delay specified Sitemap provided

@ No restrictions or sitemap No Robots.txt

','.:". [OHNS HOPEINS
TR

Consent in Crisis: The Ranid Dedline of the Al Data Commons. 2024 135

file:///Consent%20in%20Crisis/%20The%20Rapid%20Decline%20of%20the%20AI%20Data%20Commons,%202024

CommonCrawl %@% Crawl

= A non-profit organization that release a new crawl of the internet every month they.
o So far, there have been ~100 crawls from 2008-2024.
o In 2016, a crawl took 10-12 days on 100 machines. They used Apache Nutch.
o This is not a complete of the internet. Crawls have some overlap but try to diversify.
« Common Crawl follows links from previously crawled pages.
o Also note, it respects robots.txt

= CCis a common sources of pre-training data.

o WARC: The raw HTTP responses, including R e Li : Total Size
ype File List #Files .
full web pages. e eeeedlE)

Segments segment.paths.gz 100

o WAT: The metadata summary from WARC files. WARC warc paths.gz 90000 76.08
o WET: The extracted plaintext from WARC files, ol ﬁgj‘ﬁii S i
stripping out HTML and other non-textual content. oot fies T B o
Non-200 responses non200responses.paths.gz 90000 2.59

URL index files cc-index.paths.gz 302 0.19

Columnar URL index files cc-index-table.paths.gz 900 0.22

< 3 https: .commoncrawl.org/crawl- -MAIN-2024-30/index.htm|

https://blog.commoncrawl.org/blog/common-crawl-move-to-nutch
https://data.commoncrawl.org/crawl-data/CC-MAIN-2024-30/index.html

CC is messy. Is that a concern?

137

‘ Besides quantity, the choice of dataset is also critical

Garbage in
Garbage OUT

[Slide credit: Samet Samik]

C4: A cleaned up pre-training dataset

= C4: Colossal Clean Crawled Corpus Theste, aak s
o The course is CommonCrawl.
o English language only * C4 745GB
o 750GB after ton of filtering C4, unfiltered 6.1TB

= Notice that the unfiltered data is quite large.
o Common Crawl is mostly not useful natural language

Play with the data: https://c4-search.apps.allenai.org/

oy
ol

139

https://c4-search.apps.allenai.org/

Remove any:
« References to Javascript
C4: The Data « Pages with "{" (no code), “Lorem ipsum”
text (dummy text), “terms of use”, etc.
» Pages with “bad words”.

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for

culinary and non-culinary purposes Organic dried lemons from our farm in
throughout the world, primarily for its juice, California.

which has both culinary and cleaning uses. Lemons are harvested and sun-dried for
The juice of the lemon is about 5% to 6% maximum flavor.

citric acid, with a ph of around 2.2, giving it Good in soups and on popcorn.

a sour taste.

The origin of the |

Retain:
» Sentences with terminal
punctuation marks
» Pages with at least 5 sentences,
sentences with at least 3 words

Slide adapted from Colin Raffel 140

https://www.lipsum.com/
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en

Pre-training Data: Experiment

= Takeaway:
o Clean and compact data is better than large, but noisy data.
o Pre-training on in-domain data helps.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21

E-N
L]

O ' Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 141

I_ Does it matter that my
data has ton of repetitions? _|

142

Pre-training Data Duplicates

= There is a non-negligible number of duplicates in any pre-training data.

10

105 -

lD'T_

Count

104 4

10! 1

E;I,’.” Ji HNS I h.

’ % train examples with % valid with

dupintrain dupinvalid dup in train
C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%

LMI1B 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%
OpenWebText ca

1013 4

105 4

10° 10! 107 10% 10* 10°
Number of Duplicates in Training Data

Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022

Count

1010 4

108 4

106 4

104_

10° 10! 10? 10° 10*
Number of Duplicates in Training Data

143

Pre-training Data Duplicates

g L |

L

There is a non-negligible number of duplicates in any pre-training data.
Maybe we should not spend our training budget re-learning things we have already seen.

Dataset [Example Near-Duplicate Example

Wiki-40B \n_START_ARTICLE_\nHum Award for Most Impact- | \n_START_ARTICLE_\nHum Award for Best Actor in a
ful Character \n_START_SECTION_\nWinners and nomi- | Negative Role \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nln the list below, winners are nees\n_START_PARAGRAPH_\nIn the list below, winners are
listed first in the colored row, followed by the other nominees. listed first in the colored row, followed by the other nominees. [...]
[...]

LMI1B I left for California in 1979 and tracked Cleveland ’s changes on | I left for California in 1979 , and tracked Cleveland ’s changes on
trips back to visit my sisters . trips back to visit my sisters .

C4 Affordable and convenient holiday flights take off from your | Affordable and convenient holiday flights take off from your depar-

departure country, "Canada". From May 2019 to October 2019,
Condor flights to your dream destination will be roughly 6 a
week! Book your Halifax (YHZ) - Basel (BSL) flight now, and
look forward to your "Switzerland" destination!

ture country, "USA". From April 2019 to October 2019, Condor
flights to your dream destination will be roughly 7 a week! Book
your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look
forward to your "Croatia" destination!

Deduplicating Training Data Makes Language Models Better, 2020

144

Deduplicating Data Improves LMs

= Models: GPT-2-like (1.5B param) models

= On there datasets:
o C4 : the original training data

o C4-NearDup: C4 excluding exact duplicates

o C4-ExactSubs: C4 excluding
near-duplicates

p
Except when evaluated on

duplicate evaluation data!

- J
f)
Training on deduplicated data
\always leads to lower PPL!)

E;j|.q|\\31u:h.H*
& o

ataset

Evaluation

C4 Original

\>C4 Duplicates

C4 Unique
LM1B

Wiki40B

E Training data
) s Original
— =8 msm NearDup
[———— s ExactSubstr

o
9]

10 15 20 25
Perplexity

W
o
W
ul

Deduplicating Training Data Makes Language Models Better, 2020 145

Deduplicating Data Improves LMs

= Another evidence from Gopher paper: Performance of 1.4B parameter models (lower
is better) trained on OpenWebText, C4, and versions of MassiveWeb with
progressively more pre-processing stages added.

= Applying a quality filter and de-duplication stages significantly improves quality.

Wikitext103 Curation Corpus Lambada
335 I 570 I 28 I B OpenWebText
’ 1 ’ | | e Cc4
3.30 : 2.65 : : MassiveWeb Unfiltered
" 1 | 1 B+ Quality Filter
E 3.25 : 2.60 : : B + Exact Deduplication
1 | | I + Fuzzy Deduplication
3.20 1 2.55 1 |
1 | I
3.15 : 2.50 : : I I

&7 JoHNS HOPKINs I ole. k. Analvis & Insiaht - 146

https://arxiv.org/pdf/2112.11446

=

How can I do my own
deduplication? _|

How do you scale data deduplication?

= Pre-training is huge. Naively deduplicating the data is going to take forever!!

= How do you deduplicate it? Here are a few options:
o SuffixArray
o MinHash
o BloomFilters
o Embedding-based dedup

v : 148

Bonus

The simplest: hashing documents

Hash all documents, so each document receives one unique hash.
Efficiency: This will be fast.

Granularity:

o This will be sensitive to small changes; any change in the document (e.g., one
word change) would change its hash.

o Also, we're deduplicating full documents.
Different choices of hashing functions (trade off between efficiency vs collision):
o Collison: h(x) = h(y), if x!=y.
o Cryptographic hashing (SHA-256, SHA-3, BLAKE?2); collision resistant but slow.
o DJB2, MurmurHash, CityHash: Not collision resistant but fast.

149

|
What are Suffix Arrays?

= A common approach is using Suffix arrays — A suffix array for a string 7 (of length m)
is an array of integers [0, m) that correspond to suffixes of 7$, stored in sorted order.

o Example: 7 = “abaaba$”

= Space complexity:

0 | abaaba$ 6 |$ 5
o O(m) 1 | baaba$ Sort suffixes |5 | a$ Nowyoucan | 5
2 | aabas lexicographically [| 1p4 S drop the strings -
3 | aba$ 3 | aba$ 3
4 | ba$ 0 | abaaba$ 0
6 |a$ 4 | ba$ P
7 |3 1 | baaba$ 1

[q
] H S
ol

150

https://epubs.siam.org/doi/abs/10.1137/0222058

|
What are Suffix Arrays?

= A common approach is using Suffix arrays — A suffix array for a string 7 (of length m)
is an array of integers [0, m) that correspond to suffixes of 7$, stored in sorted order.

o Example: 7 = “abaaba$”

= Space complexity:

0 | abaaba$ 6 |$ 5
> Otm) 1 | baaba$ Sort suffixes |5 | a$ Now you can c
2 | aabas lexicographically | aabas drop the strings -
3 | aba$ 3 | aba$ 3
4 | ba$ » 0 | abaaba$ » 0
¢ LG 4 | bas P
7 1% 1 | baaba$ 1

_* You don't need the suffixes since, given their index, you can look them up from 7.
" o 151

Bonus

Suffix arrays: querying

= Querying: Is Pa substring of 7?

= Two crucial observations:
1. For P to be a substring, it must be a prefix of >1 of T's suffixes.
2. Suffixes sharing a prefix are consecutive in the suffix array.

$
= Example: Given SA of 7 = “abaaba$” as Now you can
find the indices (if any) of substring P = “aba”., b drop the strings
aaba

= In practice, we can use binary search to to check
whether P is a prefix of any suffix.

aba$
abaaba$

= Complexity: O(n log m)
o for m = len(T) and n = len(P) ba$
o See an example here. baaba$
vt 152

= | B OITWIN |0 | O
= | AR OIWIN |01 | O

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_10_suffix_arrays_2.pdf

| |
LCS with SuffixArrays

Suffix arrays also allows us to quickly check overlap between pairs of documents.
Querying: Given SA of T, what is its Longest Common Subsequence (LCS) with P?
This can also be done with binary search O(n log m) for m = len(T) and n = len(P).
See an example here.

- Find more about these algorithms in Ben Langmead's course: https://www.langmead-lab.org/teaching.html

&) 153

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/sa/2022_02_20_suffix_arrays_4.pdf
https://www.langmead-lab.org/teaching.html

Deduplication with Suffix Arrays

= Concatenating all text in the corpus together and then sorting each suffix.

= By scanning this sorted list, substrings with a common prefix can by identified by
scanning the prefices of neighboring elements in the sorted list.

= This latter step can be done in an embarrassingly parallel fashion.

= Granularity:
o Note SAs can only do exact deduplication!
o But it can allow you to do deduplication on substrings/sub-documents.

= Hyperparameter: the length of overlap
o Lee at al. deduplicated substrings that are at least 50 tokens long.

See example here: https:
Uses MinHash:

&) ; 154

https://github.com/google-research/deduplicate-text-datasets/blob/master/README.md
https://arxiv.org/abs/2107.06499

Deduplication with MinHash

= MinHash is a locality-sensitive hashing technique used to group sets into collections
based on their Jaccard similarity.

o Note, unlike SuffixArrays, MinHash can do “fuzzy” deduplication!
o Hyperparameters: the n-gram-size, and the number of permutations used.
o Lee et al used:
* n-gram-size of 5 tokens and Jaccard sim < 0.8;
« 9K permutations, split into 450 buckets of 20 hashes each.
o Lietal. used: 1,395 permutations, split into 93 buckets of size 15.

Uses MinHash: L . D licating Training D Makes Lan Models B r, 202
Uses MinHash: Li et al. Data : e e next aenerati ini - -

.)) [)- d XL generd dlning Or Id ld 1€ 4
v ¢ Also see: https://blog.nelhage.com/post/fuzzy-dedup/ 155

https://arxiv.org/abs/2107.06499
https://arxiv.org/pdf/2406.11794
https://blog.nelhage.com/post/fuzzy-dedup/

Bonus

Deduplication with BloomFilters

Bloom filters are a data structure that enable space-efficient set membership queries.
o A Bloom filter maintains a sketch of a set (in sublinear space) that supports an
* insert operation,

 a probabilistic membership_query operation.

« Note: The latter operation has no false negatives (i.e., return False for an element in the set),
but it may occasionally return a false positive (i.e., return True for an element not in the set).

Efficiency: Li et al. say that BF is “vastly more efficient than a MinhHash and SuffixArrays.”

Granularity:
o Can be used for both exact dedup (like Sondaini et al) and "fuzzy” dedup!

o Caveat: MinHash performs doc-level deduplication at a document vs. document level,
whereas BFF performs document-level deduplication at a document vs. corpus level.

Hyperparams: Number of hashers which determines the false positive rate.

BloomFilters: Space/time trade-offs in hash coding with allowable errors, 1970
Uses BloomFilter: Soldaini at al. Dolma: An open corpus of three trillion tokens for language model pretraining research, 2024 https://github.com/allenai/ bff

https://dl.acm.org/doi/abs/10.1145/362686.362692
https://arxiv.org/abs/2402.00159
https://github.com/allenai/bff

Comparison between dedup algorithms

= Single methods: BF better than any other method standalone.

= Combination: The competitive approaches are last row (exact -> MH -> SA) and BF-
only. The former leads to more compact data.

Exact Dedup MinHash Suffix Array Bloom Filter Tokens Removal Rate CORE A from Baseline

X X X X 76B 00% 40.1 +0.0

v X X X 66B 13% 41.0 +0.9

X v X X 62B 18% 40.9 +0.8

Individual X X v X 51B 33% 41.4 +1.3

technique X X X v 56B 26% 41.7 +1.6

v v X X 58B 24% 402 +0.1

_ v X v X 49B 36% 413 +13

Combined X v v X 48B 37% 412 +1.2

techniques v v v X 45B 41% 417 +1.6
o | Li et al. D

L

157

https://arxiv.org/pdf/2406.11794

Bonus

Deduplication in embedding space

= D4 performs dedup in embedding space of sentences by a pre-trained sentence embedder:
o (1) deduplication: drop data points in epsilon-ball around each data point.
o (2) diversification: k-means to cluster points and drop those far from centroids

= Does it work?
o Yes, it gives 22% training speedup over baseline (random selection).
o Is it better than MinHash? Depends &

+— baseline —s— semdedup —e— ssl_prototypes —s— D4 Non Web Snapshots

153 4 22.18% faster |
152 |

T T T T T T T T T T
1.00 0.80 0.60 0.40 020 0.0(208 408 60B 80B 1008
selection ratio Number of Tokens Seen

PPL
s

158

L

d4:%20Improving%20LLM%20Pretraining%20via%20Document%20De-Duplication%20and%20Diversification,%202024

Deduplication: Recap

= Does it matter that my data has ton of repetitions? Yes, one should do careful dedup.
= How can I do my own deduplication?

o Scaling it up requires advanced data structures.

o So far, there is no clear winner between these algorithms. A “kitchen sink” approach
that mixes dedup algorithms is generally best, but it's an empirical exercise.

o BF is generally preferred since it's cheaper/faster.

159

I_ Should I worry about old data
iIn my pre-training? _|

Bonus

Prevalence of stale data

Breakdown of old versions of Wikipedia in RedPejamas

RedPejamas which is based on dumps from C4, CC and a recent Wikipedia dump.

The bars blow show the breakdown of older versions of Wikipedia in RedPajamas.
o There s a ton of old Wikipedia versions in RedPejamas! (=)

The solid trend is the perplexity of a pre-trained model on temporal instances of Wikipedia.
o The significant stale training data in has skewed PPL toward older versions of Wikpedia.

I Wikipedia Dump
Wikipedia in C4
B Wikipedia in CommonCrawl

N
o
o
o

1500 ~

1000 A

500 -

Number of Versions

0-
© oA AN AW D D) O 0 00 0N N A
NI IR PN N RN N R N A
> s '19 o s '19 s s f\? > O K X &Q B
ronstion . WYFEEVFEE TFE & V& V¢ ¢
ol . . 161
ited]) J] ; jage OQ 024

https://arxiv.org/abs/2403.12958

I_ Should I worry about skew of
the data mixtures in my pre-training?

162

Bonus

Data Mixtures

Your dataset mixture will determine the versatility of the resulting model.

Data in the world is always skewed. For example,
o English has a lot more language than other domains.
o Reddit is a lot larger than science papers.

A uniform "weight” of data during pre-training is not good since overrepresented
domains would dominate (e.g., your model would be a better at English than Azeri).

Overamplifying underrepresented domains also runs risk of overfitting.
So, there is a lot of research on finding good balance.

163

oy
ol

https://arxiv.org/abs/2410.04579
https://arxiv.org/abs/2305.10429

Bonus

Language filtering

= Many works limit their data to English.

= Chinese models (e.g., Qwen and DeepSeek) are mostly English + Chinese.

= The issue is the difficulty curating high-quality data. Also cost training on more data.

= GPT-4, Claude, Gemini are all multilingual.

= How do people identify languages? A popular choice is fastText which supports 176 langs.

= Danger in English-only filtering:
o accidentally filtering out dialect of English.
o lll-defined for code-switching (e.g., English + Chinese).

164

https://fasttext.cc/docs/en/language-identification.html

=

Few notable data pipelines

|

165

LLaMA 1’s Data Pipeline

Starts with the massive crawled data by CommonCrawl.

The WET format that contains textual information.
WARC is raw, WAT is metadata, WET is text+some metadata.

CommonCrawl (CC) Deduplication Language LM Filtering
== Massive Web 3 (%] Language - Train LM on
e — = WAR > hardi —> s : . — @f .
* Crawl = ¢ * RN Identification 5 target lang (Wiki)
[" I
\
‘1‘\\,\\» | (= WAT § Paragraph Language § Paragraph
\ - dl Normalization Scoring Perplexity w/ LM
\ :
: I ¥
N ;
S .. 1| Paragraph | | || | ATTA Discard or P Segment Perplexity
. WE h‘% Hashing V Keep Decision | | | -l distribution B |
! !

‘ """"" Discard or
Deduplication —— ..
Q P ’\//‘ Keep Decision

166

&

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

LLaMA 1’s Data Pipeline

Shard WET content into shards of 5GB each (one CC snapshot can have 30TB).
Then you normalize paragraphs (lowercasing, numbers as placeholders, etc),
compute per-paragraph hashes and then duplicate them.

CommonCrawl (CC) Deduplication Language LM Filtering
"= Massive Web i £3 Language - Train LM on
= —> = WAR < hardi >y = — éﬂz‘ -
4*? Crawl i — ¢ = ‘ Sharding Identification 5 target lang (Wiki)
L + !
N - WAT § Paragraph Language § Paragraph
— 7| = Normalization Scoring Perplexity w/ LM
\ : { :
v v v
— 5 = . Paragraph | | || | A7TA Discard or 2 Segment Perplexity
= WET)ﬂ% Hashing V Keep Decision | | | ul distribution —
v , .

e e | AA Discard or
@ Reduplicaton. —r— r\,/\ Keep Decision

167

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

LLaMA 1’s Data Pipeline

Perform language identification and decide whether to keep or discard languages.
The order of when you do this in the pipeline can impact the language discrimination quality.

CommonCrawl (CC) Deduplication Language LM Filtering
== Massive Web 3 (%] Language - Train LM on
e — = WAR > hardi —> s : . — @f .
* Crawl = ¢ * RN Identification 5 target lang (Wiki)
[" I
\
‘1‘\\,\\» | (= WAT § Paragraph Language § Paragraph
\ - dl Normalization Scoring Perplexity w/ LM
\ :
: I ¥
N ;
S .. 1| Paragraph | | || | ATTA Discard or P Segment Perplexity
. WE h‘% Hashing V Keep Decision | | | -l distribution B |
! !

‘ """"" Discard or
Deduplication —— ..
Q P ’\//‘ Keep Decision

168

&

https://twitter.com/tarantulae/status/1650170087708454913?t=ncWWY0FI0tYC_dYLs76r5g&s=19

11 aMA 1'c¢ Data Dinalina
Do further quality filtering: Train a simple LM (n-gram) on target languages using Wikipedia,
then compute per-paragraph perplexity on the rest of the data:
« Very high PPL: Very different than Wiki and likely low-quality = Drop
« Very low PPL: Very similar or near duplicates to Wiki > Drop

CommonCrawl (CC) Deduplication Language LM Filtering

"= Massive Web i £3 Language - Train LM on

e —» = WARC Shardi B 3 5 @‘. et

* Crawl = - ‘ arding Identification 57 target lang (Wiki)
e WAT § Paragraph Language § Paragraph

| = Normalization Scoring Perplexity w/ LM

— 10N Paragraph /A Discard or Segment Perplexity
= WET \% Hashing V Keep Decision | | | distribution N

o G Discard or
e Deduplication ——— ’\/‘ Keep Decision

LR CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, 2019 169

oy
ol

DataDecomp-LM filtering pipeline

Figure 4: Construction of DCLM-BASELINE from
DCLM-PooOL. Before this pipeline, we extracted

DCLM-Pool from Common Crawl with resiliparse.

Percentages are based on the total number of original
documents.

DataComp-LM: In search of the next generation of training sets for language models, 2024

170

Few cleaned-up pre-training datasets

Dataset Example Tokens License
models

165B ODC-BY English

(Raffel et al. 2020)
The Pile GPT-J, Pythia 300B 22 datasets including CC, Varies by dataset subset English
(Gao el al. 2020) books, code, news

RedPejamas Llama 1 1.2T CC, C4, Github, Arxiv, Books, Varies by dataset subset English
(Weber et al. 2024) Wikipedia, StackExchange

RefinedWeb Falcon 600B CC ODC-BY 1.0 English

Pen . 202

Dolma OLMo 3T CC, C4, Gutenberg, Github, ImpACT MR English
(Soldaini et al. 2024) Wikipedia, Wikibooks

DataComp-LM SmollLM2, 240T CC ? English
(Lietal. 2024) DCLM

[e |
=0T

@ OIS FIOPKINS 171

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2406.11794

The Pile

= Pile-CC: From Common Crawl; uses justText to extract useful text.

= PubMed Central: 5M NIH funded papers and public.

= arXiv: preprint for research papers since 1991 (uses latex).

= Gutenberg PG-19: Online books (before 2019) with copyright clearance.
= Books3 is a a collection of ~200K books. Has been subject of lawsuits.
= StackExachange: Q&A format is close to real applications.

= Github: Content is not just the code.
o Note, GH archive has regular snapshots of Github (commits, forks, etc.)

oy
b |

Component Raw Size
Pile-CC 227.12 GiB
PubMed Central 90.27 GiB
Books3' 100.96 GiB
OpenWebText2 62.77 GiB
ArXiv 56.21 GiB
Github 95.16 GiB
FreeLaw 51.15 GiB
Stack Exchange 32.20 GiB
USPTO Backgrounds 22.90 GiB
PubMed Abstracts 19.26 GiB
Gutenberg (PG-19)* 10.88 GiB
OpenSubtitles’ 12.98 GiB
Wikipedia (en)* 6.38 GiB
DM Mathematics’ 7.75 GiB
Ubuntu IRC 5.52 GiB
BookCorpus2 6.30 GiB
EuroParl 4.59 GiB
HackerNews 3.90 GiB
YoutubeSubtitles 3.73 GiB
PhilPapers 2.38 GiB
NIH ExPorter 1.89 GiB
Enron Emails’ 0.88 GiB
The Pile 825.18 GiB

Slide inspiration: Percy Liang 172

https://github.com/miso-belica/jusText
https://github.com/google-deepmind/pg19
https://huggingface.co/datasets/defunct-datasets/the_pile_books3
https://www.wired.com/story/battle-over-books3/
https://www.gharchive.org/
https://arxiv.org/abs/2101.00027

Summary: preparing pre-training data

Data does not fall from the sky. You have to work to get it!

Finding large data: CommonCrawl has a ton of crawled dumps, but not the only one.
Cleaning data can save tons of compute and even give you gains.

Repetitions are often a waste of compute and deteriorate model quality.

Scaling deduplication requires advanced data structures.

Old data old data may skew your model predictions, but it depends on your application.
Data mixtures are quite important, though depend on your downstream application.

173

Pre-training language models:

The actual training

=

What pre-training objectives
should I use?

|

On Pre-training Objectives

= So far, the dominant objective we have seen is “next-token” prediction.

= |n reality any “marginal” observations about language can be a source of
supervision.

oy
ol

Bonus

176

Objectives

Prefix language modeling
o Input: Thank you for inviting
o Output: me to your party last week

BERT-style denoising

o Input: Thank you <M> <M> me to your party
apple week

o Output: Thank you for inviting me to your
party last week

Deshuffling

o Input: party me for your to. last fun you
inviting week Thanks.

o Output:

[e | i
L]

Bonus

IID noise, replace spans

Input: Thank you <X> me to your party <X> week
Output: <X> for inviting <Y> last <2Z>

IID noise, drop tokens

Input: Thank you me to your party week .

O Output: for inviting last

Q7 YOS TIOPKINS Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 177

Bonus

Objectives: Experiments

= All the variants perform similarly

= “Replace corrupted spans” and “Drop corrupted tokens” are more appealing because
target sequences are shorter, speeding up training.

Assuming Enc-Dec architecture.
Evaluated for classification tasks.

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
Deshuffling 73.17 18.59 67.61 58.47 26.11 39.30 25.62
BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 27.41
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82

E-N
=

o Exploring the limits of transfer learning with text-to-text transfer transformers, 2020 178

=

How should we select the
right hyperparams?]

IsoPlots: Tradeoffs at a smaller scale

IsoFLOPs slices

= The performance of your model depends on a complex 5.00
combination of many factors. 1 |
= Goal: find the best combinations, for a fixed compute. 4.00 N 13 kgt
) .. vl le+19
= [t's good to change various parameter (e.g., training @ A == 3et19
H H'W) / 7 |4 -
dﬂl;a;{ tiléﬁ’a gr eosther hyperparams) and see how it's 2 300 ff’8gg§°ood‘9 00 a1 1D
. = QQ\ /, 7’ f ///// ——- 3 20
q g ‘\.\Q\\s\\\:;\??eoey;// A7 ,///,:,/ e 62:20
Ssee e T —e les21
\\t‘\“s;'m%::o" LAt [==- 3Z+21
\\\:“~.‘.-.-"’ === Gopher
2.00 Treesii
100M 1B 10B 40B
Model size

E-N i
e JOH NS

L

180

[How should I
train the model?

|

Optimizers

= Most modern models use "AdamW" optimizer (not vanilla Gradient Descent).

o Adam optimization is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order “momentums”.

cost
Movement =

Negative of Gradient + Momentum

o “W" because it decouples “weight decay”
from “learning rate”. (Details out of scope
for us. See the cited paper.)

—p Negative of Gradient

«ensp Momentum

—p Real Movement

Gradient=0

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
=T https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

W e, ' [Decoupled Weight Decay Regularization, 2017] 182

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Batching Data

Model: 13B LLaMA on A100 GPU

Previously we talked about the 9 1.2k
importance of batching data é
GPUs are faster at Tensor operations and £ 0.8k -
hence, we want to do batch processing =
The lager batch of data, the faster they & g 4 -
get processed. =
@)
Alas, the speedup is often sub-linear = 0 : . .
(e.g., 2x larger batch leads to less than L 0 10 20 30
2x speedup). Batch size (# requests)

oy
ol

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

40

183

Batch sizes: some known statistics

[]
LLaMA: Open and Efficient Foundation Lanquage Models, 2023

params dimension n heads nlayers learning rate batch size n tokens

6.7B 4096 32 32 3.0e 4 4M 1.0T
13.0B 5120 40 40 3.0e 4 4M 1.0T
32.5B 6656 52 60 1.5¢4 4AM 14T
65.2B 8192 64 80 1.5¢74 4M 1.4T

The Llama 3 Herd of Models, 2024
GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU

8,192 8 1 16 64 8,192 32 16M 430 43%
16,384 8 1 16 128 8,192 16 16M 400 1%
16,384 8 16 16 8 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

D k-V2: A Strong, Economical, and Efficient Mixture-of-Experts Lan M [, 2024

is set to 1.0. We do not employ the batch size scheduling strategy for it, and it is trained with
HEORSIaREbateh SZEOF 4608 SEqUENEEs, Dring pre-raining, we st the maximum sequence

&7 Jorns Hox A E | Model of | arge-Batch Training, 2018 184

https://arxiv.org/pdf/1812.06162
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04434

Can I fit this model in which GPU?

= One of the followings:
o You have a model a model and want to find the right GPU for it.
o You have a GPU and want to find the largest model to fit in.

= What should we do?
o The memory taken up by a model depends on:
* Model parameters
 Activations: notice that these increase with larger batch and seq length
 Gradients (of training)

oy
. |

185

The Memory Usage

oy
ol

= Here is the memory usage of an NVIDIA A100 when serving (i.e., no training)

o Model: 13B LLaMA
o Batch size of 10

= ~65% of your GPU memory is
the model parameters that never change

= ~32% of your memory are KV tensors that
change for each input.
o This KV cache will increase for larger batch sizes.

o Managing this part of the memory is key for
efficient training.

Parameters
(26GB, 65%)

KV
Cache
(>30%)

Others

NVIDIAA100 40GB

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

186

How many parameters does my

Transformer have?

.

Wl-q e R Xm,w{‘ ER xﬁ,WiV € R¥m, w0 € Rd*d
Let’ t th b f t head; « Attention(xwiq,xwik,xwi”)
u L]

€t's coun € numDber Oor parameters. X « MHAttention(x) = Concat(heady, ..., head,) W’

= The self-attention block params:
d X<—f(XW1+b1)W2+b2
o 3X (d X ;) X m+ d? = 4d? W, € R4 W, € Rdr<d

(note, not showing layer-norm and residuals)

= The FFN block params:
o 2% (d X dg) m: number of heads

_ d: feature dimension in output of SA
= So, in total: 4d? + 2ddg

= The ratio of SA/FFN parameters is Z—i and dg is usually 2-4 larger than d.

= In most models, roughly 2/3 of transformer parameters are feedforward blocks

= Notice that the num of params in independent of seq length (n) or batch size (b)!
o So, in theory you should be able to run your SA on sequences of any length!

(but would it work on longer sequences? -- more on this later)
187

Dropout and other regularization

= Do we need regularization during pretraining?

= Arguments against:

o There is a /ot of data (trillions of tokens), more than parameters.

o SGD only does a single pass on a corpus (hard to memorize)

= This is all quite reasonable.. but what do people do in practice?

oy
ol

[Slide credit: Tatsu Hashimoto]

188

Dropout and weight decay in practice

E-N
=

L

Original transformer 0.1

GPT2 0.1
T5 0.1
GPT3 0.1
T5vl1.1 0
PaLM 0
OPT 0.1
LLaMA 0
Qwen 14B 0.1

0

0.1

0

0.1

0
(variable)
0.1

0.1

0.1

Many older models used
dropout during pretraining

Newer models (except
Qwen) rely only on weight
decay

* Most of the times papers just don’t discuss dropout. On open models, this closely

matches not doing dropout. This may not be true of closed models.

[Slide“credit: Tatsu Hashimoto]
189

Why weight decay LLMs?

= [Andriushchenko et al 2023] has interesting observations about LLM weight decay

3.8 —
Awp =0.0 s ;::-"’
Awp=0.1 e
3.7 o0 o o
R
) o Bec3 &
836 L B
g Lo
] .‘;%9 e
© 3.5 s
2 ~ihibst
g h

w
£y
ol
:
. .’l-
X Y. ¢
&

3.3 W"

e
33 3.4 3.5 3.6 3.7 3.8
Training loss

It's not to control overfitting

10X cosine LR decay Constant LR
3.7 — Awp=0.0, w; — Awp=0.0, w;
— Awp=0.1, w¢ — Awp=0.1, w;
— Awp=0.3, w;

“_Awp = 0.0, ws - tiny LR

w
o

Awo = 0.0, w; - tiny LR

a Awp =0.1, we— tiny LR a - Awo=0.1, wi~ tiny LR
o -) o - Awp=0.3, w, > tiny LR
0'13'5 ------- Awo = 0.3, we= tiny LR 033'5
£ £ L i
© 3.4 © 3.4
= [

33 33

3.2 - 3.2

10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
Iteration Iteration

Weight decay interacts with learning rates (cosine schedule)

[Slide credit: Tatsu Hashimoto]

190

Convergence

= In practice, your model’s loss should continue
to go down with more training on more data.

= So, the real bottlenecks are:
o (1) compute
o (2) data

= Sometimes training diverges (spikes in the
loss), at which point practitioners usually
restart training from an earlier checkpoint.

E-N i
e JOHNS
-

Train PPL

— LLaMA 7B
—— LLaMA 13B
— LLaMA 33B
LLaMA 65B

0 200 400 600 800 1000 1200 1400
Billion of tokens

Llama-2
— 7B
— 13B
— 34B

70B

250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

191

oy
. |

-
Staged pre-training

= Few models do staged pre-training (e.g., llama3).

1. Start with pre-training indiscriminative on all sorts of data (including short data).
2. Do continued pre-training on long text.

3. Annealing (learning rate going to zero)

192

Recap of training LLMs

= IsoPlots: for a fixed compute, which combination of parameters give you the best
bang for the buck.

= Careful batching makes your training go brrr!

= Memory usage can be tricky since there are various moving parts.
o More on distributed training later on.

= Dropout is less common but you still ‘reqularize” LMs via large-scale training.

193

Mixture of Experts (MoE)

Slide credit to Tatsu Hashimoto and Samet Oymak

for earlier versions of these slides.

Mixture of Experts (MoE)

A high quality Sparse Mixture-of-Experts.

Vw Mistral Al

magnet:?

xt=urn:btih:9238b09245d0d8cd915be09927769d5f7584 c1c9&dn=mixt

ral-

8x22b&tr=udp%3A%2F%: %3A1337%2Fannounce&tr

=http%3A%2F%2F t org%3A1337%2Fannounce @'deepseek

DeepSeekMOoE: Towards Ultimate Expert Specialization in
Mixture-of-Experts Language Models

[Slide credit: Tatsu Hashimoto]

195

-

L

Mixture of Experts (MoE)

= Two main elements (NNs):

o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.

o A gate networking/router: It determines which tokens are sent to which experts.

= You can increase the # experts without affecting FLOPs

y
3

[Add + Normalize

FFN Layer
Add + Normalize

Self-Attention

[

X

],

Dense Model

—»{ Add + Normalize](—
[) () J

_—n

—»[Add + Normalize]<—

f f

Self-Attention

ST

"The" "Dog"

Y
t

[

Add + Normalize

Sparse FFN Layer

Add + Normalize \
—mm:ﬁ:m

Self-Attention

t

X

J—

Sparse Model

T

"

Add + Normalize

e

/

7

Add + Normalize

]<_

"The"

Self-Attention

T

“Dog"

Ea AN

https://arxiv.org/abs/2209.01667

Why are MoE’s getting popular?

= Same FLOP, more param does better

1e —1.2-
6.01 e —— Switch-Base: 128e
\26 1 3] = Switch-Base: 64e
b\ ~ 1] —— Switch-Base: 32
5.84 % - Switch-Base: 16e
v de -1.44 = T5-Base
[
\\ _‘Z\
5.61 X X _1.5
- \8e L=
(%2} i =
g . g
1 5.41 S -1.67
77 8 (@]
2 . 16e 3
" P-1.71
5.21 ‘\928 Z
Tl Bde =181
5.01 .
‘\\\.1 28e -1.9
~~~..__ 2566
48 =
A LRSI . ¥ L ¥ o B h s, —20 T T T T T
10° 100 0 1 2 3 4
Sparse Model Parameters Training Step 1e5

[ e |

1II|J.| NS HOPKINS A — B s N . 197



https://arxiv.org/pdf/2101.03961

Why are MoE’s getting popular?

= Faster training over a dense
(non-MOE) model

t’«‘. OHMNS HOPE TINS

—1.2+

—1.31

Neg Log Perplexity
| [ [
o o &

|
.
1

—-1.81

—1.94

7X Speedup

— Switch-Base: 128e
Switch-Base: 64e
Switch-Base: 32e

= TH-Base

150 200 250 300 350
Training Time

50 100

198



https://arxiv.org/pdf/2101.03961

Why are MoE’s getting popular?

= Have faster inference compared to
the dense models of the same size
model

199



Why are MoE’s getting popular?

MoE Transfomer Encoder
with device placement

MoE Transfomer
Encoder

:‘>

Encoder
output

= Parallelizable to many devices (T waae vom

p

Feed Forward
FFN

(more on this in a bit)

= MoEs parallelize nicely
since each FFN (expert) can

—> Add & Norm
1
fit in a device.
Attention
—> Add & Norm

|

(N/2)x

—> Add & Norm
1
Multi-Head
Attention
\

= Input embeddings +
"i;" I B .} Positional embeddings
S

Encoder
output (shard 1)

Encader
output (shard E)

Add & Norm Add & Norm ‘
/ =~ G B |
Feed Forward Feed Forward
FFN FFN
e |
—> Add & Norm —> Add & Norm
1 1
Multi-Head Multi-Head
Attention Attention
(N/2)x (N/2)x |
Add & Norm dd & Norm
A
Model-parallel FFNE
MoE
| —— | |
11-to-All Dlspatc
] Gating
L
—> Add & Norm e o o —> Add & Norm
Multi-Head Devices Multif-Head
Attention TawnE Atteption
|
/ . /
N— Device 1/ ‘\ Device E//
[Slide A oto]
Input embeddings + n.pult embe ings +
Positional embeddings Positional embeddings

(shard 1)

(shard E)



MoOE variants

Typical: replace MLP with MoE layer

¥1 EEE“:I:D ¥z I:E.l:“:l:D
¥
. t
Add + Normalize
i FFM1 FFH 3 FFN A4 FFNZ (FFHN 3 FFHN 4
Sparse FFN Layer
1
Add + Normalize . A
' I | Add + Normalize
Sef- Attantion t t
t .. Self-Attention
x) (LTI x
“The" "Dog”
= I N

e JOHNS HOPRINS
il

Less common: MoE for attention heads

s

\_

N

Vd B
\

MLP | | MLP
3 4

Layer Norm

D

Layer Norm

_/

[ModuleFormer, JetMoE]

201



Top-k routing, intuitively

= Most models use the class top-k routing which involves 3 steps:
o (1) Scoring: Produces a distribution

over the experts. Output Hidden [OO|
o (2) Routing: identify the set of top-k

experts and assign their scores:

o (3) weighted sum among top-k:
creates weighted average of experts [ . ] [ 5 ] [ v ]
summed with the residuals.

= . Input Hidden
E ' . 202



Grok implement MoE layer.

Top-k routing, in detail waeeps,eekand }

= Most models use the class top-k routing which involves 3 steps:

o (1) Scoring: Suppose the input feature (the input to MoE layer) is x.
The gates are selected by a logistic regression (i.e., linear scoring + softmax)
which produces a distribution over the experts.

s = Softmax(xWW,.) where W, are the trainable params

o (2) Routing: identify the set of top-k experts and assign their scores:
g; = {Si S; € TopK({sj |1<j<NLK)
0 0.w.

o (3) weighted sum among top-k:
4 softmax after the TopK

Mixtral and DBRX }
y = Zgl FFNl(x) + Xx
i

203



Recent variations: shared experts

= Smaller, larger number of experts + a few shared experts that are always on.

= The idea is to have induce more complementarity among experts, by having a shared
expert that takes the care of easy/common skKills.

Output Hidden

-----------------

Input Hidden m Used in
DeepSeek / Qwen

(a) Conventional Top-2 Routing === (b) + Fine-grained Expert Segmentation == (c) + Shared Expert Isolation

(DeepSeekMoE)

(DeepSee 204


https://arxiv.org/abs/2401.06066

Various ablations from the DeepSeek paper

= More experts, shared experts all seem to generally help

557 JOHNS HOPKINS
L .

1.2

1.1

Normalized Performance
o o (=] -
S o © o

o
o

0.5

I 0 shared expert + 2 out of 16 routed experts (GShard)

[ 1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)

Il 1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
I 1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)

U]

HellaSwag ARC-easy ARC-challenge TriviaQA NaturalQuestions
Metrics

Figure 3 | Ablation studies for DeepSeekMoE. The performance is normalized by the best perfor-
mance for clarity in presentation. All compared models have the same number of parameters
and activated parameters. We can find that fine-grained expert segmentation and shared expert
isolation both contribute to stronger overall performance.

205


https://arxiv.org/abs/2401.06066

Why haven’t MoEs been more popular?

= Infrastructure is complex / advantages on multi node.

‘ At a high level, sparsity is good when you have many accelerators (e.g. GPU/TPU) to host all ‘
the additional parameters that comes when using sparsity. Typically models are trained using data-
parallelism where different machines will get different slices of the training/inference data. The
machines used for operating on the different slices of data can now be used to host many more
model parameters. Therefore, sparse models are good when training with data parallelism and/or
have high throughput while serving: training/serving on many machines which can host all of the

- parameters.

) JOHNS HOPKINS : i i 206


https://arxiv.org/abs/2209.01667

Why haven’t MoEs been more popular?

* Training stability: Because of the discrete nature of MoE’s decisions, small changes in router
weights can have disproportionate effect in the outcomes.

o One solution is adding stochasticity during training to encourage exploration.
= Redundancy and hybridity: There is a tendency for multiple experts to converge in learning

similar information. This dilutes the specialization of experts and results in overlapping
knowledge domains and inefficient use of parameters.

o One solution is using shared experts (used by DeepSeek).
* Load balancing: The imbalance calls to few few popular experts makes MoE inefficient. During

training, the gating network may converge to few experts which may continue to self-reinforce as
favored experts are trained quicker and hence selected more.

o One common solution is using an auxiliary loss to encourage giving all experts equal
importance.

= Complex infrastructure: Often you need a lot of a lot of GPU memory to fit your model and
run it efficiently.

o A lot to discuss on this but beyond the scope of our class.

207
[A Review of S - M int . | 0


https://arxiv.org/abs/2209.01667

Side issue — stochasticity of MoE models

= There was speculation that GPT-4's stochasticity was due to MoE.
= Why would a MoE have additional randomness?

(1) Routing (2) Permutation (3) Computation (4) Un-Permutation
Assign token feature vectors to experts Group tokens by expert. Drop tokens that |,  Compute the expert layers for the set of | Un-permute the results and scale each by
based on probabilities. exceed expert capacity. tokens they were assigned. ! its expert probability.

1
1
1
hidden_size : capacity_factor=1 T
1 R v cmmmmmes 1 x e 1
[ I . brown® > 5 - i
— I ' (unused) o = B : !
‘the I b it o | 1
» “quick” 1 I
S “brown” : = : — : = Expert-1("the”)
= “fox” I el T~ 1 1 RN I o Expert-0(*quick”)
= “jumped” : 3 3 “the” ! B i \ ! El Expert-2(brown’) | _ @] _
———————————————————— + > B b
“over” \ & _____‘jumped” \ = | 8 Expert-0(“fox")
1 o 1 = 1 =3 Expert-1(‘jumped"”)
* 1 3 I L J 1 S 0
1 ] —_—— 1
. 1 ]
Expert Indices \ T _g \
! | ,,,,,,, GEICKNNN— 1 !
— [1]z]e]2]1]z2]— (dropped) § “fox” T | ]| T | |
--------------------- | o N
Probabilities e !
—_— 1
1
1

—> [l

= Token dropping from routing happens at a batch level — this means that other
peoplels querles Ccan drop your tOkenl [Slide credit: Tatsu Hashimoto]
QY Joi s Hops 208




Summary

= MoEs take advantage of sparsity — not all inputs need the full model
= Discrete routing is hard, but top-k heuristics seem to work
= |ots of empirical evidence now that MoEs work, and are cost-effective

209



=

Bonus content on MoE

|



Mixture of Experts (MoE)

= Two main elements (NNs):
o Sparse MoE layer: Instead of using the dense FFN, sparse FFNs are used.
o A gate networking/router: It determines which tokens are sent to which experts.

= You can increase the # experts without affecting FLOPs

y
3

[ Add + Normalize

FFN Layer
Add + Normalize

Self-Attention

[

X

)

Dense Model

Add + Normalize ](—
G0 G J
_—n
Add + Normalize ]<—
t f

Self-Attention

ST

"Dog"

Y
t

[ Add + Normalize J

Sparse FFN Layer
Add + Normalize

Self-Attention

t

X

-

Bonus

Sparse Model

T

"

Add + Normalize

].—

/

7

[ FFN 3| [FFN 4

—
T

Add + Normalize ]4—
Self-Attention
x2 ml_:?
“The" “Dog"

PAR RS



https://arxiv.org/abs/2209.01667

MoOE variants

= Routing function
= Expert sizes
= Training objectives

E-N
=

L

Bonus

212



Bonus

Variations of routing function

= Observation: choosing experts based on the input usually entails a discrete selection
(i.e. which expert to use), which complicates backprop relying on differentiability.

= The pioneering work of Shazeer et al. 2017 formulated routed function that was
adopted and adapted by many follow-on works. Here is how it worked:
1. Top-k routing function which takes as an input a token representation x,
2. Then routes it to the top-k experts out of the set N experts.

h(zx);
€ — .
pz(x) = N _n(z); h(.’L‘) =Wrw
) j e trainable variable W,
Y= Z pz E ("I; denote the set of selected top-k expert indices as 7T .
€T

&) | ) N R 213



https://arxiv.org/abs/1701.06538

Routing function

= Many of the routing algorithms boil down to “choose top k”

E-N
L ]

L

Experts

E4 E3 E2 Ei

E5

Tokens Tokens
TT T2 T3 TT T2 T3
1 1
U Mp-_i(]
¥| 1 T n N [ | T
o Ll
R - —
@ O ™ [
o
o] > I i
_g T T u L 1 1
o vl
T T T T
il
Each token Each expert
chooses top-k chooses top-k
expert token

Experts

E3 E2 E1

E4

n
Ll

tokens should go to

[A Review of Sparse Expert Models in Deep Learning, 2022]

Tokens
™ T2 T8

/_I—Iﬁ

Globally |
Decide Expert
Assignment

<l )

Global routing

which experts

Bonus

214


https://arxiv.org/abs/2209.01667

Common routing variants

= Used in most MoEs
o Switch Transformer (k=1)
o Gshard (k=2), Grok (2),
o Mixtral (2), Qwen (4),
o DBRX (4), DeepSeek (7)

Top-k

H§§h Routing

Add + Normalize }1—\

= Common baseline Hashing

ash
Funcnon Functlon

[_DIIUE LTEUIL
.....

21 HNS HOPEINS ><1I:EEED] XzEEEEEEl
[A Review of Sparse Expert Models in Deep Learning, 2022] "The" "Dog"


https://arxiv.org/abs/2209.01667

Other routing variants

wI:D%EEEI [T TT]
= Solve a matching problem :
. . f . r—b[ - Add + Normalize — ]4—
o Linear assignment for routing % P
o Used in various papers like Clark ‘22 (or) (o) (eow) (7o)
= 1 J ]l
WO Alunnans x[TTTTT]

—

Reinforcement Learning

wEEI%EEEI

v[TTTTT]

A

Add + Normalize

.l

A

EOIERIEEIED

EDIEBIEDIED

RL to learn routes

o Used in some of the earliest work
Bengio 2013, not common now

"Dog"”


https://arxiv.org/abs/2209.01667

Scores

75%

70%

65%

80%

Bonus

Some recent MoE results

Language Understanding (MMLU) Programming (HumanEval) Math (GSMBK)

73.7% %

. *

&

¢

V‘\lb

Performance

N.4%
69.8% . 70.1%
66.9%
63.2% 62.9%
61.1%
54.8% 541%
¥ e 32 2% Xi < Xi
> X ¥ b
. ]

L 3 * [ 2
3 2 > b + S % >
¥ . & N < g NLog
N y cy & \}}},}/ C?‘O/ Q@J 'D A w“&x ey
N

Output tokens per second per user

20

15

10

(s}
o

0

& DBRX

M Mixtral-8x7B
X LLaMa2-70B
4+ Dense-132B

0

0

MSO4+ MSO4+ MSO+ MSO+ MSO+ MSO4+ MSH+
1 2 4 8 16 32 64

Number of Concurrent Users

Inference throughput

= MoEs are most of the highest-performance open models and are quite quick.

i I
W JOH

217



Bonus

Some recent MoE results — Qwen

Model MMLU GSM8K HumanEval Multilingual MT-Bench Model #Parameters #(Activated) Parameters
Mistral-7B 64.1 47.5 27.4 40.0 7.60 Mistral-7B 7.2 7.2
Gemma-7B 64.6 50.9 32.3 - - Qwen1.5-7B 7.7 7.7
Qwen1.5-7B 61.0 62.5 36.0 452 7.60 Gemma-7B 8.5 7.8
DeepSeekMoE 16B 45.0 18.8 26.8 - 6.93 DeepSeekMoE 16B 16.4 28
Qwen1.5-MoE-A2.7B  62.5 61.5 34.2 40.8 7.7 Qwen1.5-MoE-A2.7B 14.3 2.7

2] HMS HICPEINS 218



Bonus

Some recent MoE results — DeepSeek

Metric # Shot | Dense Hash Layer Switch
ablation work on MoEs showing # Activated Params N/A | 0.2B 0.2B 0.2B
they’re generally good FLOPs per 2K Tokens N/A | 29T 29T 291

' # Training Tokens N/A | 100B 100B 100B

Pile (Loss) N/A | 2.060 1.932 1.881

HellaSwag (Acc.) 0-shot | 38.8 46.2 49.1

PIQA (Acc.) 0-shot | 66.8 68.4 70.5

ARC-easy (Acc.) 0-shot | 41.0 45.3 45.9

ARC-challenge (Acc.) 0-shot | 26.0 28.2 30.2

RACE-middle (Acc.) 5-shot | 38.8 38.8 43.6

RACE-high (Acc.) 5-shot | 29.0 30.0 30.9

HumanEval (Pass@1) 0-shot | 0.0 1.2 24

MBPP (Pass@1) 3-shot | 0.2 0.6 0.4

TriviaQA (EM) 5-shot | 4.9 6.5 8.9

NaturalQuestions (EM) 5-shot 1.4 ik credit: Tatsu2Bhimoto]

E-N i
e JOHNS
-




How do we train MoEs?

= Major challenge: we need sparsity for training-time efficiency...

o But sparse gating decisions are not differentiable!

= Solutions?
1. Reinforcement learning to optimize gating policies

2. Stochastic perturbations
3. Heuristic ‘balancing’ losses.

Guess which one people use in practice?

oy
. |

Bonus

[Slide credit: Tatsu Hashimoto]
220



Bonus

How do we train MoEs?

= RL via REINFORCE does work, but not so much better that it's a clear win

3.2 i o S-BASE B LY RL-R Bk Hash Tk Comparisons
3.04 2Me g 9 Joe g L e, VO, 4 Samss
1 e~ Bl Wy 8 b LR SIS
2.8 e L foe BT Sl B PR 5
; - \.\0- ‘::‘.- - *\“:“~‘ Rl \‘:‘.‘0 e \‘:\‘~
2.6 \.\. ..‘.s..:::.' -5 e \*:::..:::\_. J® ‘r*A.M‘ 'o\‘\:\.:: L7 ~\~~~~\\:_!
< ° - >~ Rkl pu gl ™ e ™ .
2.4 e ¥y ey 4. p TR o2 T A g ‘o~'\2§) e e e D
. e 1 . bt T “u~y T ® . T B,
i o -, '\._‘ .-—‘__.__. .s’\. - =E=s~
- Pae il B a | h.“~c“_ SNS5z: ezl
2.0 it SO = “tto . — 1 T T=S8sss
T T 1 T T T UL T T T T T 1 T T T T T 1 T T T
1248 32 128 512 1248 32 128 512 12438 32 128 512 12438 32 128 512
Expert Count Expert Count Expert Count Expert Count

(REINFORCE baseline approach, Clark et al 2020)

= RL is the ‘right solution’ but gradient variances and complexity means it’s not widely used.

[ e |

r;i"-l'l |

HoPE IS
HMNS PR NS

[Slide credit: Tatsu Hashimoto]
221



Bonus

Stochastic approximation

= From Shazeer et al 2017 — routing decisions are stochastic with gaussian perturbations.
o This naturally leads to experts that are a bit more robust.
o The softmax means that the model learns how to rank K experts

G(z) = Softmax(KeepTopK (H(x),k))
H(z); = (z - W,); + StandardNormal() - Softplus((x - Whoise):)

V; if v; is in the top k£ elements of v.

KeepTopK (v, k); = {—oo otherwise.

[Slide credit: Tatsu Hashimoto]
r x I q
&7 . _ 222
Jtrageou arge neural networks: The sparsely-gated mixture-of-expe aye



https://arxiv.org/abs/1701.06538

L

Bonus

Stochastic approximation

Stochastic jitter in Fedus et al 2022. This does a uniform multiplicative perturbation for the
same goal of getting less brittle experts. This was later removed in Zoph et al 2022

router_weights = mtf.Variable(shape=[d_model, num_experts])

router_logits = mtf.einsum([inputs, router_weights], reduced_dim=d model)
if is_training:

router_logits += mff.random;uniform(sﬂape=router_logits.shape, minval=1-eps, maxval=1+eps)
router_logits = mtf.to_float32(router_logits)

router probs = mtf.softmax(router_logits, axis=-1)

[Slide credit: Tatsu Hashimoto]
223



https://arxiv.org/pdf/2101.03961

Bonus

Load balancing losses

= A key issue regarding systems efficiency: using the experts evenly.
= Define an auxiliary loss and add it the total model loss during training.

Given N experts indexed by ¢ = 1 to N and a batch B with T tokens, the auxiliary loss is
computed as the scaled dot-product between vectors f and P,

N So if an expert gets triggered or
loss=a- N - Z fi- B get assigned higher probability,
i=1 downweight their share
where f; is the fraction of tokens dispatched to expert %,

1 .
fi= T Z 1{argmax p(z) = i} (5)
zeB
and P; is the fraction of the router probability allocated for expert 4, 2
1
P, = T ;pz(l’) (6)

|>hae credit: Tatsu Hashimoto]

&) ; | e _ 224



https://arxiv.org/pdf/2101.03961

Bonus

Recent Extensions of Load Balancing

= Per-expert balancing — same as the switch transformer

-£ExpBal al Z fiPi (12)
w1
f; i Z (Token t selects Expert i), (13)
K'T t=1
1 I
? Z Sits (14)
t=

= Per-device balancing — the objective above, but aggregated by device.

D
LDevBal = Z fi’P;; (15)
, 1
fi = &l Z fir (16)
tje&
Pi= P, (17)
je&i
- _ [Slide credit: Tatsu Hashimoto]
v . 2 CEPSECCK . drd imate Expe pecializati i ixture-of-Expe d 1dgdE 1€ 0 ] 225



https://arxiv.org/abs/2401.06066

Bonus

Training MoEs — the systems side

= MOoE routing allows for parallelism, but also some complexities
= Modern libraries like MegaBlocks (used in many open MoOES) use smarter sparse MMs

(A) Batched Matrix Multiplication (B) Block Diagonal Matrix Multiplication (C) Block Sparse Matrix Multiplication
Compute a set of independent matrix multiplications of ! Expert computation can equivalently be computed using block diagonal matrix We can enable load imbalanced routing and variable sized experts by

the same size in parallel. | products with equal sized blocks along the diagonal. expressing expert computation as block sparse matrix multiplication.

expert_capacity

1
|
. . I 1
hidden_size ffn_hidden_size : T : T
I I
1 1
8 | Expert-0 = ! Expert-0 ! Expert-0
| |
1 1
I mF====== 1
1 1
1 1
8 | Expert-1 | = ! # | Expert-1 | =2 N ity % =
| H Expert-1
[ [ I
1 1
1 1
I 1
8 | Expert-2 = | Expert-2 |
' ' Expert-2
[Slide credit: Tatsu Hashimoto]
(==
o | &

67 JOHNS HOPKINS 226



Bonus

Training MoEs — the systems side

= Enables additional kinds of parallelism

How the model weights are split over cores

Data Model Model and Data Expert and Data Expert, Model and Data
Parallelism Parallelism Parallelism Parallelism Parallelism

...........................................................................................................

How the data is split over cores

Data Model Model and Data Expert and Data Expert, Model and Data
Parallelism Parallelism Parallelism Parallelism Parallelism
Di0:@:
ClO i
[Slide credit: Tatsu Hashimoto]

&9 JouNs H
L

227



https://arxiv.org/abs/2209.01667

Bonus

Side issue — stability

8 "Exponential functions have the property that a small input perturbation can lead to a large difference in
the output. As an example, consider inputting 10 logits to a softmax function with values of 128 and one logit
with a value 128.5. A roundoff error of 0.5 in bf1oat 16 will alter the softmax output by 36% and incorrectly

: - exp(0) - exp(0) a5
ma.ke all logits equal. The cal'culatlon goes from PO F10exp(—05) 0.14.2. to PO F10-0xp(0) 0.091.
This occurs because the max is subtracted from all logits (for numerical stability) in softmax operations and
the roundoff error changes the number from 128.5 to 128. This example was in bf1oat16, but analogous
2500 50007800 10000 12500 5000 situations occur in £1oat 32 with larger logit values.

o [Zoph et al 2022]

o

Training Loss

IS

= Solution: Use Float 32 just for the expert router (sometimes with an aux loss)

L.x)= % > [roed e 5)

[Slide credit: Tatsu Hashimoto]
= 228



Issues with MoEs — fine-tuning

100.0

97.5

= Sparse MoEs can overfit
on smaller fine-tuning data

92.5

90.0

IvVietric

@
=l

87.5

-

85.0

82.5

-
3
3

0]
4]

80.0

o
95}

|
|

Al NonMoE MoE Attention FFN
Parameters Being Updated

= Zoph et al solution — finetune
non-MoE MLPs

SuperGLUE Score
a0
=

0
]

®

96.0

Bonus

SuperGLUE CB Task

—— Sparse train_eval
—— Sparse validation_eval
—— Dense train_eval

—— Dense validation_eval

Step

Training Data. For training the chat model, we conduct supervised fine-tuning (SFT) on our
) in-house curated data, comprising 1.4M training examples. This dataset spans a broad range of
" Deepseek solution — use categories including math, code, writing, question answering, reasoning, summarization, and

versatile and applicable in bilingual scenarios.

_— |ots of data 1.4M SFT more. The majority of our SFT training data is in English and Chinese, rendering theschat model



Bonus

Other training methods — Upcycling

e
Original Dense Block 8
& 75% - method @
- LERED }—>|Attenti0r1l - - LR MLP e - 8 ® Dense ot
Norm ] Norm bs) ® Upcycling .e @ XL
‘ < variant L .=
""""" g @ Base ..
R o - ® Large e
copy weights copy weights copy weights .M o [}
eteitssensmsmomasnsssainy  brosstosmmmasamassnsion B ﬁ 73% ® XL ®
: = , ° ©
| . MoE ; g 72% o -0 008 Large
| ; =
Y Y i : E’ .
| Layer . Layer Router Weighted| Cd
Norm }_. Attentlon} ej? Norm }-’ from scraich Sum I A E 70% - ...
: : °
: T ; g .
: < 68% {o-"e.® oosin? Base
Upcycled MoE Block © 10! 102 103

) Extra Pretraining Time (TPU-core-days)

= Can we use a pre-trained LM to initialize a MoE?

[Slide credit: Tatsu Hashimoto]
! it 230



Upcycling example - MiniCPM

= Uses the MiniCPM model (topk=2, 8 experts, ~ 4B active params).

Model | C-Eval CMMLU MMLU HumanEval MBPP GSMS8K MATH BBH
Llama2-34B - - 62.6 226 33.0 422 6.24 441
Deepseek-MoE (16B) 40.6 425 45.0 26.8 39.2 18.8 43 -

Mistral-7B 46.12 42.96 62.69 27.44 45.20 33.13 5.0 41.06
Gemma-7B 42.57 44.20 60.83 38.41 50.12 47.31 6.18 39.19
MiniCPM-2.4B 51.13 51.07 53.46 50.00 47.31 53.83 10.24  36.87
MiniCPM-MoE (13.6B) | 58.11 58.80 58.90 56.71 51.05 61.56 1052 39.22

Table 6: Benchmark results of MiniCPM-MoE. t means evaluation results on the full set
of MBPP, instead of the hand-verified set (Austin et al., 2021). The evaluation results of
Llama2-34B and Qwen1.5-7B are taken from their technical reports.

Bonus

= Simple MoE, shows gains from the base model with ~ 520B tokens for training

E_*rrl | HMNS HOPE I

[Slide credit: Tatsu Hashimoto]
231



Bonus

Upcycling example — Qwen MoE

= Qwen MoE - Initialized from the Qwen 1.8B model top-k=4, 60 experts w/ 4 shared.

Model #Parameters #(Activated) Parameters MMLU GSM8K HumanEval Multilingual MT-Bench
Mistral-7B 7.2 7.2 64.1 47.5 27.4 40.0 7.60
Qwen1.5-7B 7.7 7.7 64.6 50.9 323

Gemma-7B 8.5 7.8 61.0 62.5 36.0 45.2 7.60
DeepSeekMoE 16B 16.4 2.8 45.0 18.8 26.8 - 6.93
Qwen1.5-MoE-A2.7B 14.3 2.7 62.5 61.5 34.2 40.8 7.7

= Similar architecture / setup to DeepSeekMoE, but one of the first (confirmed)
upcycling successes

[Slide credit: Tatsu Hashimoto]
W T s ' 232



Upcycling example (?) Mixtral

= Some people think Mixtral may also be upcycled

Correlation between Mixtral-8x7B and Mistral-7B

q_proj
k_proj
V_proj
0_proj

Correlation

0.0° 0 20 40 60 80 100 120
Layer idx

= but since Mixtral is only open weights (no open training code) we don't really know ..
[Source: https://twitter.com/tianle_cai/status/1734188749117153684F credit: Tatsu Hashimoto]

E;II."Ju :|_|I\a_lhlr:-h:.\~ .


https://twitter.com/tianle_cai/status/1734188749117153684

Bonus

Why haven’t MoEs been more popular?
= Training objectives are somewhat heuristic (and sometimes unstable):

Sparse models often suffer from training instabilities (Figure 1) worse than those observed in stan-
dard densely-activated Transformers.

350 8
300 .
250
= 200 |
o o5
- c
€ 150 =
‘© @4
E @
= 1004 =
3
50
2
ol
0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 [Zoph et al 2022]

Step Step

[Slide credit: Tatsu Hashimoto]
:i"'l LA IR ¥ 234



	Slide 1: Transformer Language Models
	Slide 2: Transformers: Recap 
	Slide 3: After Transformer …
	Slide 4
	Slide 5: The Phases of Our Understanding 
	Slide 6: Chapter Plan 
	Slide 7
	Slide 8: Impact of Transformers 
	Slide 9
	Slide 10: Encoder-Decoder models: T5
	Slide 11: Encoder-Decoder models: T5
	Slide 12: Encoder-Decoder models: T5
	Slide 13: Recap: Enc-dec models
	Slide 14
	Slide 15: Encoder-only models (BERT)
	Slide 16: Encoder-only models (BERT):  Probing its predictions 
	Slide 17: Encoder-only models (BERT):  Probing its predictions 
	Slide 18: Encoder-only models (BERT):  Pre-training Objectives 
	Slide 19: Encoder-only models (BERT):  Pre-training Objectives 
	Slide 20: Encoder-only models (BERT):  Fine-tune for tasks 
	Slide 21: Encoder-only models (BERT): One of the Early Signs on the Effectiveness of Scale
	Slide 22: Encoder-only models (ModernBERT):  Recent Reincarnation of BERT
	Slide 23: Recap: Encoder-only models
	Slide 24
	Slide 25: Decoder-only (GPT)
	Slide 26: GPT4
	Slide 27: Other Available [Decoder] LMs
	Slide 28: Summary: Existing models 
	Slide 29: LMSys ChatArena
	Slide 30
	Slide 31: Training Pipeline for LLMs
	Slide 32
	Slide 33
	Slide 34: Another View of Architectural Variations 
	Slide 35
	Slide 36: Quiz: Pre-norm vs Post-norm 
	Slide 37: Pre-norm vs Post-norm 
	Slide 38: Pre-norm vs Post-norm — Explanation? 
	Slide 39: Layer Norm vs RMSNorm 
	Slide 40: Why RMSNorm? 
	Slide 41: Why RMSNorm? 
	Slide 42
	Slide 43: The Bias Terms 
	Slide 44: Recap so far 
	Slide 45
	Slide 46: Activations 
	Slide 47: Activations: ReLU vs GeLU
	Slide 48: GELU, in details 
	Slide 49: Activations: Gated activations (*GLU)
	Slide 50: Activations: Gated activations variants
	Slide 51: Do Gated Linear Units work? 
	Slide 52: Do gated linear units work? 
	Slide 53: Recap: Gating, activations 
	Slide 54
	Slide 55: Serial vs Parallel Layer 
	Slide 56: Recap
	Slide 57
	Slide 58: Self-Attention layer variations 
	Slide 59: Diversion: Arithmetic Intensity  
	Slide 60: Quiz 
	Slide 61: Arithmetic Intensity: An example
	Slide 62: Quiz 
	Slide 63: Arithmetic Intensity of Training  Self-Attention
	Slide 64: Self-Attention Cost of Computation During Incremental (Autoregressive) Generation
	Slide 66: KV-Cache drag  
	Slide 67: Sparse / sliding window attention
	Slide 68: Quiz 
	Slide 70: Sliding Window Attention with “Sinks”
	Slide 71: Sliding Window Attention with “Sinks”
	Slide 72: Multi-Query Attention (MQA)
	Slide 73: MQA in practice 
	Slide 74: Grouped Query-Attention (GQA)
	Slide 75: Grouped Query-Attention (GQA)
	Slide 77: Recap 
	Slide 78
	Slide 79: Embedding parameter tying 
	Slide 80
	Slide 81: Positional Embeddings: The Flavors
	Slide 82: Positional Embeddings: The Flavors
	Slide 83: Positional Embeddings: The Flavors
	Slide 84: A Unified Perspective on  Relative Positional Encoding
	Slide 85: A Unified Perspective on  Relative Positional Encoding
	Slide 87: Relative Positional Encoding
	Slide 88: Recap 
	Slide 89: Rotary Positional Encoding (RoPE)
	Slide 90: Thinking About Rotation Matrix
	Slide 91: Rotary Positional Encoding (RoPE)
	Slide 92: Thinking About Rotation Matrix
	Slide 93: RoPE in its General Form
	Slide 94: Implementation and code for RoPE
	Slide 95: Recap 
	Slide 96
	Slide 97: Architectures: Different Choices
	Slide 98: Architectures: Different Attention Masks 
	Slide 99: Architectural Variants: Experiments
	Slide 100: Architectural Variants: Experiments
	Slide 101: Architectural Variants: Experiments
	Slide 102: Architectural Variants: Experiments
	Slide 103: Architectural Variants: Experiments
	Slide 104: Architectural Variants: Experiments
	Slide 105: Architectural Variants: Experiments
	Slide 106: Architectural Variants: Experiments
	Slide 107: Architectural Variants: Experiments
	Slide 108: Architectural Variants: Experiments
	Slide 109: Architectural Variants: Experiments
	Slide 110: Architectural Variants: Experiments
	Slide 111
	Slide 112: Architecture Hyperparams 
	Slide 113: The Surprising Consensus #1:  FFN Dimension Ratio 
	Slide 114: Why this range of multipliers? 
	Slide 115: Exception #1 — GLU/Gated variants 
	Slide 116: Exception #2 - T5 
	Slide 117: The Surprising Consensus #2:  Model Dimension Ratio 
	Slide 118: Heads vs model dim 
	Slide 119: Aspect radios 
	Slide 120: Considerations about aspect ratio
	Slide 121: Evidence on aspect ratio scaling 
	Slide 122: Recap of architecture hyperparams
	Slide 123
	Slide 124: What Tokenizers do people use? 
	Slide 125: What are typical vocabulary sizes?
	Slide 126: Dealing with white spaces 
	Slide 127: Dealing with numbers
	Slide 129: Tokenizers 
	Slide 130: Summary of LLM architectures 
	Slide 131
	Slide 132: The pre-training data size and sources
	Slide 133: Where do we begin to collect data? 
	Slide 134: Robots.txt
	Slide 135: Robots.txt’s are becoming  increasingly more restrictive
	Slide 136: CommonCrawl 
	Slide 137
	Slide 138
	Slide 139: C4: A cleaned up pre-training dataset
	Slide 140: C4: The Data
	Slide 141: Pre-training Data: Experiment 
	Slide 142
	Slide 143: Pre-training Data Duplicates 
	Slide 144: Pre-training Data Duplicates 
	Slide 145: Deduplicating Data Improves LMs
	Slide 146: Deduplicating Data Improves LMs
	Slide 147
	Slide 148: How do you scale data deduplication? 
	Slide 149: The simplest: hashing documents
	Slide 150: What are Suffix Arrays? 
	Slide 151: What are Suffix Arrays? 
	Slide 152: Suffix arrays: querying
	Slide 153: LCS with SuffixArrays
	Slide 154: Deduplication with Suffix Arrays
	Slide 155: Deduplication with MinHash
	Slide 156: Deduplication with BloomFilters
	Slide 157: Comparison between dedup algorithms
	Slide 158: Deduplication in embedding space 
	Slide 159: Deduplication: Recap 
	Slide 160
	Slide 161: Prevalence of stale data 
	Slide 162
	Slide 163: Data Mixtures 
	Slide 164: Language filtering
	Slide 165
	Slide 166: LLaMA 1’s Data Pipeline 
	Slide 167: LLaMA 1’s Data Pipeline 
	Slide 168: LLaMA 1’s Data Pipeline 
	Slide 169: LLaMA 1’s Data Pipeline 
	Slide 170: DataDecomp-LM filtering pipeline
	Slide 171: Few cleaned-up pre-training datasets
	Slide 172: The Pile 
	Slide 173: Summary: preparing pre-training data
	Slide 174
	Slide 175
	Slide 176: On Pre-training Objectives
	Slide 177: Objectives
	Slide 178: Objectives: Experiments 
	Slide 179
	Slide 180: IsoPlots: Tradeoffs at a smaller scale
	Slide 181
	Slide 182: Optimizers 
	Slide 183: Batching Data
	Slide 184: Batch sizes: some known statistics 
	Slide 185: Can I fit this model in which GPU?
	Slide 186: The Memory Usage 
	Slide 187: How many parameters does my Transformer have? 
	Slide 188: Dropout and other regularization
	Slide 189: Dropout and weight decay in practice
	Slide 190: Why weight decay LLMs?
	Slide 191: Convergence 
	Slide 192: Staged pre-training 
	Slide 193: Recap of training LLMs
	Slide 194
	Slide 195: Mixture of Experts (MoE)
	Slide 196: Mixture of Experts (MoE)
	Slide 197: Why are MoE’s getting popular? 
	Slide 198: Why are MoE’s getting popular? 
	Slide 199: Why are MoE’s getting popular? 
	Slide 200: Why are MoE’s getting popular? 
	Slide 201: MoE variants
	Slide 202: Top-k routing, intuitively
	Slide 203: Top-k routing, in detail 
	Slide 204: Recent variations: shared experts
	Slide 205: Various ablations from the DeepSeek paper
	Slide 206: Why haven’t MoEs been more popular?
	Slide 207: Why haven’t MoEs been more popular?
	Slide 208: Side issue – stochasticity of MoE models
	Slide 209: Summary 
	Slide 210
	Slide 211: Mixture of Experts (MoE)
	Slide 212: MoE variants
	Slide 213: Variations of routing function 
	Slide 214: Routing function 
	Slide 215: Common routing variants
	Slide 216: Other routing variants
	Slide 217: Some recent MoE results 
	Slide 218: Some recent MoE results – Qwen 
	Slide 219: Some recent MoE results – DeepSeek 
	Slide 220: How do we train MoEs?
	Slide 221: How do we train MoEs?
	Slide 222: Stochastic approximation
	Slide 223: Stochastic approximation
	Slide 224: Load balancing losses
	Slide 225: Recent Extensions of Load Balancing 
	Slide 226: Training MoEs – the systems side
	Slide 227: Training MoEs – the systems side
	Slide 228: Side issue – stability 
	Slide 229: Issues with MoEs — fine-tuning 
	Slide 230: Other training methods — Upcycling 
	Slide 231: Upcycling example - MiniCPM
	Slide 232: Upcycling example – Qwen MoE
	Slide 233: Upcycling example (?) Mixtral
	Slide 234: Why haven’t MoEs been more popular?

