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Scaling pre-training 

▪ The dominant focus of past few years has been on scaling training. 

o Involves multiple axes: model params, pre-training data and computing resources

test loss predictably improves with
increased pretraining compute

[Kaplan et al 2020]
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Scaling fine-tuning 

▪ We have also seen the benefits of scaling fine-tuning/alignment on diverse range of data. 

MAmmoTH2: Scaling Instructions 

from the Web, 2024

Super-NaturalInstructions: Generalization via Declarative 

Instructions on 1600+ NLP Tasks, Wang et al. 2022

https://arxiv.org/pdf/2405.03548
https://arxiv.org/pdf/2405.03548
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
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Inference-time scaling: example (1)

▪ Inference-time scaling: allowing models to continue reasoning at inference time to 
get better results, at the cost of inference compute.

▪ An earlier example: Letting models produce “thought” tokens improves its accuracy. 

[Slide credit: Sean Welleck]
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Inference-time scaling: example (3) 

▪ Inference-time scaling: allowing models to continue reasoning at inference time to 
get better results, at the cost of inference compute.

▪ Example from different domain: Training vs inference scaling laws in board games. 

o Notice that one can make up for less training 
with more inference-time scaling. 

[Scaling Scaling Laws with Board Games, 2021]

https://arxiv.org/pdf/2104.03113
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Inference scaling: problem setup 

▪ Input problem is given: 𝑥

▪ Intermediate thoughts: 𝑧1:𝑇
o The “thoughts” are characterized by a policy model (the “thinker”): 𝑝𝜃(. |𝑥).

o The “thoughts” may also depend on a reward: 𝑟𝜙(. |𝑥).

• (Other names for “reward”: verifier, teacher, feedback.) 

o Note: these may accept partial thoughts: 𝑟𝜙 𝑧𝑡+1 𝑥, 𝑧1:𝑡 to score thought 
continuation. 

▪ Ultimate answer: 𝑦 ~ 𝑝(. |𝑥, 𝑧1:𝑇)

o Answer given question and thoughts. 

o Sampled from the policy model.

[Figure: Sasha Rush]
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Inference-time scaling: dimensions 

▪ Here are the key issues we need to figure out: 

1. How should we think about the reward function 𝑟𝜙(. )?

2. What we do during inference, given 𝑟𝜙(. ) and 𝑝𝜃(. ) that are fixed?

3. How we train the policy 𝑝𝜃(. ) and reward model 𝑟𝜙(. )?
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Inference-time scaling: dimensions 

▪ Here are the key issues we need to figure out: 

1. How should we think about the reward function 𝒓𝝓(. )?

2. What we do during inference, given 𝑟𝜙(. ) and 𝑝𝜃(. ) that are fixed?

3. How we train the policy 𝑝𝜃(. ) and reward model 𝑟𝜙(. )?
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The Reward Function
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Reward mechanisms 

▪ A reward function 𝒓𝝓(. ) tells you whether the response is going in the “right” direction. 

o The reward can be a neural network or a non-statistical model. 

▪ Non-statistical examples: 

o Python Linter check (was there a syntax errors?) 

o SQL execution response (did the query find the right columns?) 

o Regular expression (did the math equations adhere to proper syntax?) 

o Chess engine (did the policy model win the game against the opponent?) 

▪ Statistical examples: 

o A classifier trained to predict how likely the current thoughts lead to an answer. 

o An LM prompted with certain goal (“LLM-as-a-judge”, e.g., "Constitutional AI")  
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Reward mechanisms: flavors  

▪ The reward may be binary 𝑟𝜙 . ∈ {0, 1} or continuous 𝑟𝜙 . ∈ (0, 1).

▪ Some rewards may need full thoughts, but some may work for partial thoughts. 

Outcome or process? → 

Learned or not learned? ↓ 

Outcome reward 

(ORM)

Process Reward 

(PRM)

Learned 
typically, 𝑟𝜙 . ∈ (0, 1)

Can be trained.
One can train it, 

but generally expensive. 

Not learned
typically, 𝑟𝜙 . ∈ {0, 1}

Can be found in-the-world for 

specific problems (e.g., chess).

Rare; if you have a reliable one, 

it’d trivialize your problem. 

[Uesato et al., 2022, Lightman et al., 2023]

https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2305.20050
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Inference-time scaling: dimensions 

▪ Here are the key issues we need to figure out: 

1. How should we think about the reward function 𝑟𝜙(. )?

2. What we do during inference, given 𝒓𝝓(. ) and 𝒑𝜽(. ) that are fixed?

3. How we train the policy 𝑝𝜃(. ) and reward model 𝑟𝜙(. )?
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Inference Algorithms
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Inference scaling: inference objective

▪ Thoughts as latent variables — Suppose 𝑟𝜙(. ) and 𝑝𝜃(. ) are fixed. 

▪ We care about 𝑝 𝑦 𝑥 , but that depends on intermediate thoughts. 

▪ Think about a marginalization over all possible thoughts 𝑧1:𝑇 : 

▪ In other words, if we were to magically explore the whole 
space of “thoughts” what is the best solution? 

▪ But the space of thoughts is combinatorially large! 

o So, we need to think of a cost-efficient way to explore the 
the space of “thoughts”. 

max
𝑦

𝑝 𝑦 𝑥 = max
𝑦

𝔼𝑧~𝑝𝜃(.|𝑥) 𝑝 𝑦 𝑧1:𝑇 , 𝑥

[figure credit: Sasha Rush]
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Inference-time scaling: 
Just let your LLM speak/think

▪ Get your LLMs spell out its thoughts. 

o Challenge: LLMs tend to stop early if they believe they’ve already answered.

▪ How can you force models to keep thinking? 

▪ A simple heuristic is to keep “nudging” the 
model to continue generating responses; if it 
stops, append "wait" or "wait, are you sure?" 
to encourage further output.

s1: Simple test-time scaling, 2025

https://arxiv.org/pdf/2501.19393
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Inference-time scaling: self-consistency

▪ Self-Consistency or Majority voting — Generate collections of isolated 
“thoughts” (parallel) and then aggregate them. 

▪ For 𝑁 samples: 

o Sample thoughts: 𝑧1:𝑇
𝑛 ~ 𝑝(. |𝑥)

o Sample answers:  y𝑛~ 𝑝(. |𝑥, 𝑧1:𝑇
𝑛 )

▪ Pick majority vote: 𝑦~ 𝑝(. |𝑥, 𝑧1:𝑇
𝑛 , 𝑦𝑛 𝑛=1

𝑁 )

[Slide credit: Sasha Rush]
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Inference-time scaling: best-of-N

▪ Rejection Sampling (best of N) — Generate collections of isolated “thoughts” 
(parallel) and their corresponding answer. Then pick one/best. 

▪ For 𝑁 samples: 

o Sample thoughts: 𝑧1:𝑇
𝑛 ~ 𝑝(. |𝑥)

o Sample answers:  y𝑛~ 𝑝(. |𝑥, 𝑧1:𝑇
𝑛 )

▪ Pick the best — few choices: 

o Based on the reward:  max
𝑛

𝑟(𝑦𝑛|𝑥, 𝑧1:𝑇
𝑛 )

o Based on the policy + reward: max
𝑛

𝑝 𝑦𝑛 𝑥, 𝑧1:𝑇
𝑛 𝑟𝜙 𝑦𝑛 𝑥, 𝑧1:𝑇

𝑛

[Slide credit: Sasha Rush]
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Inference-time scaling: search 

▪ Search algorithm— Using the intermediate scores at each step, i.e., reward 𝑟𝜙(. )
and policy 𝑝𝜃(. ), progressively guide the generation of thoughts using A*, Beam 
Search, Monte Carlo Tree Search (MCTS), etc. 

▪ Think of Beam search which is a heuristic search algorithm. 

▪ For 𝑇 steps: 

o Maintain a beam of size 𝐵, # of candidate sequences at each step.

o Given a partial “thought” 𝑧1:𝑡~ 𝑝(𝑥), expand each sequence in the 
beam by considering the top 𝑘 probable next steps based on 𝑝 . .

o Score each sequence (based on reward or policy). 

o Prune out the search space by keeping the top 𝐵 sequences. 

[Slide credit: Sasha Rush]

[figure credit: Sasha Rush]

Bonus
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Inference-time scaling: dimensions 

▪ Here are the key issues we need to figure out: 

1. How should we think about the reward function 𝑟𝜙(. )?

2. What we do during inference, given 𝑟𝜙(. ) and 𝑝𝜃(. ) that are fixed?

3. How we train the policy 𝒑𝜽(. ) and reward model 𝒓𝝓(. )?
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Training a good 
inference-scaler 
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Thinking about the inference objective

▪ Thoughts as latent variables — Suppose 𝑟𝜙(. ) and 𝑝𝜃(. ) are fixed. 

▪ We care about 𝑝 𝑦 𝑥 , but that depends on intermediate thoughts. 

▪ Think about a marginalization over all possible thoughts 𝑧1:𝑇 : 

▪ In other words, if we were to magically explore the whole 
space of “thoughts” what is the best solution? 

▪ But the space of thoughts is combinatorially large! 

o So, we need to think of a cost-efficient way to explore the 
the space of “thoughts”. 

max
𝑦

𝑝 𝑦 𝑥 = max
𝑦

𝔼𝑧~𝑝𝜃(.|𝑥) 𝑝 𝑦 𝑧1:𝑇 , 𝑥

[figure credit: Sasha Rush]

Can be replaced with 𝑟𝜙(. )
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Training for scale inference

▪ The central question here is how do you train the “policy” (the “thinker”) to be more 
conducive to inference-scaling? 

▪ Why is this non-trivial? Remember the inference goal: 

𝑝𝜃 𝑦 𝑥 = 𝔼𝑧~𝑝𝜃(.|𝑥) 𝑝 𝑦 𝑧1:𝑇 , 𝑥

▪ Even if I give you training data (𝑥, 𝑦) (or equivalently, a perfect verifier of final 
answers), you still can’t train it since you don’t know what thoughts lead to a given 
correct answers)
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Approach 1: Guess and Check

▪ Guess and Check: 

o Sample 𝑁 chain of thoughts

o Check if successful with ORM

o Train on the good ones 

[Slide credit: Sasha Rush]
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Guess and Check, formalized

▪ There is a principled way to describe “Guess and Guess” via Expectation Maximization (EM). 

▪ The training goal: max
𝜃

𝔼𝑧~𝑝𝜃(.|𝑥) 𝑝𝜃 𝑦, 𝑧1:𝑇 𝑥

1. E-Step: Explore in the space of likely thoughts 

o For 𝑁 samples: 

• Sample thoughts: 𝑧1:𝑇
𝑛 ~ 𝑝(. |𝑥)

• Sample answers:  y𝑛~ 𝑝(. |𝑥, 𝑧1:𝑇
𝑛 )

o Using ORM (gold label or verifier), keep the “good” thoughts: 𝑍good. 

2. M-Step: Update parameters to maximize our objective. 

𝜃′ ← max
𝜃

σ𝑍good
𝑝𝜃 𝑦, 𝑧 𝑥

[Slide credit: Sasha Rush]
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Guess and Check as EM: Few Examples

▪ Different people refer to this approach under different names: 

o Self-Training [Yarowsky, 1995]  

o Best-of-N Training [Cobbe et al., 2021]

o STaR [Zelikman et al., 2022]

o ReST [Gulcehre et al., 2023]

o ReST-EM [Singh et al., 2023]

o Filtered Rejection Sampling [Nakano et al., 2021]

[Slide credit: Sasha Rush]



27

ReST-EM

[Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models, 2023]

https://arxiv.org/pdf/2312.06585


28

ReST-EM

[Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models, 2023]

https://arxiv.org/pdf/2312.06585
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Guess and Check: challenges 

▪ Collapse: ”Good” and “bad” thoughts may share most of the path. 
Often, one or few small mistakes may lead to a bad outcome. 
If the training data is not able to distinguish such nuances
then the model may not learn anything useful. 

▪ Cost efficiency: Will sampling around give us reasonable 
thoughts? If the problem is complex this may take forever! 
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Approach 2: Roll-out and Re-organize

▪ Like “guess and check”, but carefully organize the roll-outs: 

▪ Guess and re-organize: 

o Sample 𝑁 chain of thoughts and label the good and bad ones with ORM.

o Re-organize the roll-outs: 

• Identify the [likely] good portions of bad roll-outs

• Construct “thoughts” that contain transitions from “bad” to “good”. 

o Train on the re-organized roll-outs. 

Bonus
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Example: Stream of Search 

▪ Through a careful search, find a “good” path (thought). 

o Say, this gives us 𝑧1:𝑇
∗ path (the shortest path from start to end)

o To find this path we had to go through several rabitholes and 
backtrack since the search found out that these were not good.

o The idea is to linearize this logic and train on it. 

Stream of Search (SoS): Learning to Search in Language, 2024

Bonus

https://arxiv.org/abs/2404.03683
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Example: Stream of Search 

▪ Through a careful search, find a “good” path (thought). 

o Say, this gives us 𝑧1:𝑇
∗ path (the shortest path from start to end)

o To find this path we had to go through several rabitholes and 
backtrack since the search found out that these were not good.

o The idea is to linearize this logic and train on it. 

▪ Specifically, find an alternative path Ƹ𝑧1:𝑇′ (𝑇′ > 𝑇) which encodes 

the whole search (including its “bad” segments). Basically, the chain 
includes transitions from “bad” segments to the “good” ones. 

o We can find Ƹ𝑧1:𝑇′ through linearizing tree process. 

▪ Upon finding Ƹ𝑧1:𝑇′ , we train an autoregressive model on it. 

o Inference time is just linear generation (no fancy search).

o Intuitively, this model learns to pivot, if it goes through 
“bad” direction. (learning to recover)

Stream of Search (SoS): Learning to Search in Language, 2024

Bonus

https://arxiv.org/abs/2404.03683
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Example: learning to “self-correct” 

▪ Learning to Self-Correct: 

o Given an input 𝑥, sample 𝑁 chain of thoughts and score them with ORM.

o Pair of  “thoughts” 𝑧 and z′ such that: 

• They’re similar (lots of overlap) 

• One is improving upon the other, i.e., ORM(𝑧) > ORM(𝑧′)

o Train a “corrector” model to produce 𝑧, given input 𝑥 and z′. 

▪ Applying it at the inference time: 

o Given input 𝑥, generate an initial solution 𝑧

o Iteratively apply the corrector to 𝑧 to improve/correct it. 

Generating Sequences by Learning to Self-Correct, 2022

Bonus

https://arxiv.org/abs/2211.00053


35

Approach 3: Training process rewards 
with search mechanisms 

▪ If you can train a process reward (PRM) 𝑟𝜙 . that approximately tell us whether the 

partial thought is going in the right direction, that will be a strong signal during 
inference. But how do you train it? 

▪ It’s going to be difficult to annotate data for training a PRM. It’s a massive space!* 

▪ It may be more feasible to infer labels for PRM, using an ORM!

o Consider MCTS but can be done with any search algorithm. 

o At each step, we have a partial rollout: 𝑧1:𝑡 up to 𝑡.

o Over-sample rollouts from 𝑡 onward, score them with ORM, 

and score the chances that 𝑧1:𝑡 would lead to a good outcome.

o Train PRM with such estimates. 

[figure credit: Sasha Rush]

* Still some folks chose to do human annotations! [Uesato et al., 2022, Lightman et al., 2023]

Bonus
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Process Reward via MCTS: example

Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations, 2023

Bonus

https://arxiv.org/abs/2312.08935
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Process reward via MCTS: example

Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations, 2023

Bonus

https://arxiv.org/abs/2312.08935
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Example: AlphaZero

▪ Goal is to train: 

o a policy (the decision maker)

o a value function (estimates the expected outcome of the game from that state)

▪ Self-play using guided-search with exploration

o The exploration is through MCTS.

o The search explores moves based on visit counts and value estimates. 

o The final move is selected based on these MCTS evaluations.

▪ Label final outcomes of self-play games

▪ Train the policy and the value function

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, 2017

Bonus

Figure source

https://arxiv.org/abs/1712.01815
https://en.chessbase.com/post/acquisition-of-chess-knowledge-in-alphazero
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Which approach is better? Depends

▪ The effectiveness of different approaches to scaling test-time compute critically varies depending on 
the difficulty of the prompt/task.

▪ Figure: Comparing beam search and best-of-N binned by difficulty level. 

o The four bars correspond to increasing test-time 
compute budgets (4, 16, 64, and 256 generations). 

o On the easier problems (bins 1 and 2), beam search 
shows signs of over-optimization with higher budgets, 
whereas best-of-N does not. 

o On the medium difficulty problems (bins 3 and 4), 
we see beam search demonstrating consistent 
improvements over best-of-N.

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters, 2024

Bonus

https://arxiv.org/pdf/2408.03314
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What is OpenAI doing? 
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Do we know what OpenAI is doing? 

▪ We don’t know the details. 

▪ But from their blog post, we can guess: 

o Uses RL during training; therefore, 
there is explicit training to incentivize
better inference-scaling.

o CoT: At the test time, it articulates 
long sequence of “thoughts”. Hence, 
no explicit search algorithm at inference. 

o Data efficient: ? 

▪ Let’s look at a few examples! 

https://openai.com/index/learning-to-reason-with-llms/

[Slide credit: Sasha Rush]

https://openai.com/index/learning-to-reason-with-llms/
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Do we know what OpenAI is doing? 

▪ A key design consideration is how to train a model for this: 

o Would you get humans to annotate follow up thoughts (off-policy data) or let the 
model annotate candidate answers and labels good/bad ones (on-policy data). 

o Seems like OpenAI went for the latter. 

https://www.youtube.com/watch?v=tEzs3VHyBDM

[Slide credit: Sasha Rush]

“When training a model for reasoning, one thing that immediately jumps to mind is to have humans 

write out their thought process and train on that. When we saw that if you train the model using 
RL to generate and hone its own chain of thoughts it can do even better than having humans 
write chains of thought for it. That was the “Aha!” moment that you could really scale this.”

https://www.youtube.com/watch?v=tEzs3VHyBDM
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Thinking about cost and ...

▪ Obviously, long inputs/outputs cost money. 

▪ Generally output tokens cost a bit more than input tokens. 

o Output tokens are generated one token at a time (one forward pass per token) 

o Input tokens are parallel, but require parallel processing 

▪ How about latency? 
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Thinking about cost and latency 

▪ Two cloud-based models: (1) Azure GPT4 on Azure; (2) Gemini2-flash on GCP. 

▪ Reading long sequences is quite fast, across different input lengths (~0.5 sec)

[Results credit: 

Owen Bianchi] 
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Thinking about cost and latency 

▪ Generating long sequences can be slow. Latency cost grows linearly in length. 

o Azure GPT4: 1.4 sec / token 

o Gemini2-flash: 0.5 sec / token

[Results credit: 

Owen Bianchi] 
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