
Model Efficiency 

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/
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Our models are getting larger!

▪ TBD

Figure Credit: Song Han (MIT)
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And consumes a lot of data!
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Motivation

Model Size
(Llama 3 Arch)

Inference Memory
(~2x model size)

Training Memory
(~7x model size)

8B 16GB 60GB

70B 140GB 500GB

405B 810GB 3.25TB

Source: https://huggingface.co/blog/llama31#inference-memory-requirements

How much GPU memory (at least) do we need to perform inference/training? 

(batch size=1, ignoring the KV cache)
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Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Longer sequences require much more memory in training!

Training Sequence Length (Number of Tokens)
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Memory consumption is not static

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

During the 
forward step, 
the activations
occupy most of 
the memory

During 
backward, 
activation 
memory gets 
freed, gradients
gets more 
memory



7

Model Efficiency: Topics 

1. Distributed Training 

2. Quantization (Post Training Quantization)

3. Distillation

Chapter goal: Getting comfortable with various mathematical and systems 
foundations for efficient deployment of LLMs. 
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Distributed 
Training



9

Distributed Training

1. Naïve Data Parallelism

2. Sharding Optimizer States (ZeRO, FSDP)

3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

GPU 0
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy
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Naïve Data Parallelism

GPU 0
Model 
Copy

GPU 1
Model 
Copy

GPU 2
Model 
Copy

Dataset

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

Each GPU compute gradient with a single shard of data
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

Gradient 2

Gradient 3 One GPU accumulates the gradients
(reduce in torch.distributed)
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NCCL Operations: Reduce

▪ Nvidia Collective Communications Library (NCCL) - A library developed to provide 
inter-GPU communications primitives (operations)

▪ Reduce: *Sums* over all *tensors* and stores it in a root GPU
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

Gradient 2

Gradient 3 One GPU accumulates the gradients
(reduce in torch.distributed)
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

Gradient 2

Gradient 3

And send the accumulated gradient to all other 
GPUs (broadcast in torch.distributed)

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3
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NCCL Operations: Broadcast

▪ Broadcast: Duplicates one tensor to all GPUs
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Accumulate gradients across all GPUs and perform gradient updates
（all_reduce in torch.distributed）

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3
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NCCL Operations: All Reduce

▪ All Reduce = Reduce + Broadcast 

= Sum over input tensors, then duplicate it to all GPUs
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Naïve Data Parallelism

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Accumulate gradients across all GPUs and perform gradient updates
（all_reduce in torch.distributed）

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3
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What is wrong with Naïve DP

- Consumes too much memory in each GPU!

- 2 bytes for FP/BF16 model params

- 2 bytes for FP/BF16 gradients 

- 4 bytes for FP32 master weights 

(the thing you accumulate into in SGD, used in mixed precision training)

- 4 bytes for FP32 Adam first order estimates

- 4 bytes for FP32 Adam second order estimates

Slide Credit: Tatsunori Hashimoto (Stanford)

We need to store 5 copies of weights, 
which occupies 16 bytes per param

GPU 1
Model 
Copy
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What is wrong with Naïve DP
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Naïve DP – Requires too much memory!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Memory/GPU for a 7.5B model:
7.5B * 16 bytes = 120 GB!

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: Sharding Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2+4) bytes = 60 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

Update Parameters

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Each GPU compute gradient with a single shard of data
(The same as naïve DP)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Assuming that 
GPU1 stores parameter states for parameters A, 

GPU2 stores states for params B, 
GPU3 stores states for params C 

Gradient 1 Gradient 2 Gradient 3

https://arxiv.org/abs/1910.02054


26

ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Split / shard the gradients into 3 parts!

Gradient 1 Gradient 2 Gradient 3

A B C A B C A B C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A

B C

B C

A B C

A

Each GPU accumulates gradients of the params whose 
optimizer states the GPU is storing (reduce_scatter in 

torch.distributed)

A B C

https://arxiv.org/abs/1910.02054
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NCCL Operations: Reduce Scatter

▪ reduce_scatter: each GPU stores the sum of a shard of the input. 

▪ all_reduce: one GPU stores the sum over all the input.
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A

B C

B C

A B C

A

Each GPU accumulates gradients of the params whose 
optimizer states the GPU is storing (reduce_scatter in 

torch.distributed)

A B C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

GPU1 : update params A; GPU2: Updates Params B; GPU3: 
updates params C. GPU1 can only update params A since it 

only stores optimizer states of params A.

A B C

Updated A

Updated B

Updated C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Each GPU sends updated params to every other GPU. 
Finishing optimizer.step(). (all_gather in torch.distributed)

https://arxiv.org/abs/1910.02054
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Quiz: NCCL Operations: All Gather

▪ all_gather: every GPU performs a ___?___ operation in parallel.

A.Reduce B. Broadcast             C. Reduce_scatter
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NCCL Operations: All Gather

▪ all_gather: every GPU performs a ___broadcast___ operation in parallel.

A.Reduce B. Broadcast             C. Reduce_scatter
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Before all_gather

A B C

Updated A

Updated B

Updated C

https://arxiv.org/abs/1910.02054
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

After all_gather, every GPU has a updated copy of the 
model

https://arxiv.org/abs/1910.02054
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Summary: ZeRO 1

▪ reduce_scatter on the gradients: splitting the gradients into different GPUs

▪ Each GPU individually perform gradient updates

▪ all_gather on updated parameters

▪ Basically free! (Compared to Naïve Data Parallelism)
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ZeRO Stage 1: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Notice: Aside from the forward pass, GPU 1 only needs 
gradients A, but in fact it stores A and B and C

A

A

A

Hey GPU1, you don't need this (can be large)

You only need these

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: Sharding Gradients

Memory/GPU for a 7.5B model:
7.5B * (2+2/3+4) bytes = 50 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient of layer X

A B C

A

A

A B

B

B

C

C

C

Splitting the gradient of a single layer during backprop, then immediately shard it!

Gradient of layer X Gradient of layer X

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 2: How it works

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Gradient 1 Gradient 2 Gradient 3

A B C A B C A B C

Params A

Params B

Params C

Params A

Params B

Params C

Params A

Params B

Params C

All-gather

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054


41

Summary: ZeRO 12

▪ reduce_scatter on the gradients: splitting the gradients into different GPUs

▪ Calculate gradients layer by layer and perform reduce_scatter, once layer is done, 
free the gradient

▪ Each GPU individually perform gradient updates

▪ all_gather on updated parameters

▪ Almost free!
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ZeRO-3 (aka FSDP): Shard Everything!

Memory/GPU for a 7.5B model:
7.5B * (2/3+2/3+4) bytes = 40 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054
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ZeRO Stage 3: How it works (simplified)
During forward pass, the parameters are gathered on-demand
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ZeRO Stage 3: How it works (simplified)
During backward pass, the gradients are scattered (Reduce_Scatter)
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Communication Costs

- Naïve Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: 2x parameter (reduce_scatter + all_gather) - this is free! Might as 
well always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is 
(almost) free!

- ZeRO-3: 3x parameter – which can be quite slow.
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Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

So far, we dealt with the optimizer states

but what about the activations?

Training Sequence Length (Number of Tokens)
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Prefix Caching

but what about the activations?

<System> You are a helpful assistant … <System>
<User> I want to know how can I use the coffee machine <User>

<System> You are a helpful assistant … <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant … <System>
<User> Help me revise my email ... <User>
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Prefix Caching

Storing the activations in CPU and retrieve it when needed.

<System> You are a helpful assistant … <System>

KV Cache

CPU

But, can we slice the activations to fit them in different GPUs? 
- Yes, by Tensor Parallelism
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Tensor Parallelism

  

  

  

  

    

    

    

     

      

      

 

 

 

 

      

      

      

We can either cut 
the weights W into 
two columns 
(Column Parallelism) 

or into two rows 
(Row Parallelism)
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Column-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight 
matrix W into 2
columns
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Row-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight 
matrix W into 2
rows
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Tensor Parallelism

X
W1 W2

Y

Computing matrix 
multiplications without 
storing internal activations 
(e.g. xW1)

In Feed-Forward Networks,
The dimension of 
W1 is usually 4x the hidden 
dimension.
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Tensor Parallelism: Llama Feed-Forward

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

activations are element-wise operations, can be parallelized
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Tensor Parallelism: Llama Attention

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

Column Parallel for Query, Key and Vector and Row Parallel for attention output
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Summary so far

- Data Parallelism 

- Naïve Data Parallelism

- NCCL Operations 

(reduce, all_reduce, reduce_scatter, broadcast, all_gather)

- ZeRO-1, ZeRO-2, ZeRO-3

- Prefix Caching

- Tensor Parallelism

- Row-wise Tensor Parallelism 

- Column-wise Tensor Parallelism
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Tensor Parallelism

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py
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Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

A large drop in throughput when scaling beyond 8 GPUs (one node)
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Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Throughput drops significantly once we go beyond one node!
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Pipeline Parallelism

Credit: Song Han (MIT)

Shard each layer of the model into individual GPUs: 
Prevents the cost of syncing params
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Pipeline Parallelism

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Each GPU is only working for 1/PP = ¼ of the time!
Idle/Work ratio = pp – 1 = 3

https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism: Improvement

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Solution: Splitting the data into mini-batches! (AFAB)

Idle / Work Ratio = PP-1 / M= 3 / 4

https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
Idea: Do backward as early as possible, releasing activations on the fly

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m=8)

https://arxiv.org/pdf/1811.06965
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Pipeline Parallelism Throughput

A small drop in throughput when scaling beyond 8 GPUs (one node)
but a large drop as we increase the microbatch number
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Interleaving Pipeline Parallelism (LLama3)
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Interleaved Pipeline Parallelism (DeepSeek)

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.
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What about (super) long sequences?

This is a super long sequence of text. 

This is a super long sequence of text

GPU 1
Model 
Copy

GPU 2
Model 
Copy

GPU 3
Model 
Copy

Suppose we want to split the sequence into different GPUs
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What about (super) long sequences?

- Feed Forward Network / LayerNorm is not affected by 
splitting the sequence, each token is processed individually

- But what about attention? Each token needs to compute dot 
product with every other token.
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Context Parallelism (Ring Attention)

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

Just pass the Key, Value 
pairs around!

However, attention mask 
is usually causal – Q1 
does not need K2, V2, ...
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Context Parallelism (Ring Attention)

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

GPU 1 computes the pre-
softmax-ed scores for 
Q1, Q2, Q3, Q4.. then 
becomes idle.
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Context Parallelism (Ring Attention)

Source: Striped Attention: Faster Ring Attention for Causal Transformers (Brandon et al., 2023)

Balancing the workload 
for each individual GPUs.
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Context Parallelism (Ring Attention)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
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Summarizing

Source: Tatsunori Hashimoto (Stanford)
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Solutions

- DeepSeek V3: DP=1, PP=16, EP (Expert Parallelism) = 8

- Llama 3: Staged Training
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Quantization 
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Quantization: Mapping from high to low 
precision
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Numeric Data Types

▪ Example: 32-bit floating point number in IEEE 754 (FP32)
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Floating Point Numbers



78

Floating Point Numbers

More range, less precision
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Linear Quantization

How to find these numbers?
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Linear Quantization
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Linear Quantization: Scale

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877
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Linear Quantization: Zero Point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877
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Linear Quantization: Zero Point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877
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Quantization of Language Models

There exists many outliers in activations (activations of the first layer MobileNetV2):

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721
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Quantization of Language Models

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721
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Quantization of Language Models

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

Quantize each channel individually, each channel gets its own scale and Zero-point!

https://arxiv.org/abs/1906.04721
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Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339
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Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339
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Quantization of Language Models

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

Keep outlier channels / features in 16-bit, quantize the rest.

https://arxiv.org/abs/2208.07339
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Quantization of Language Models

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

https://arxiv.org/abs/2208.07339
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Quantization of Language Models

- Maps floating point numbers (fp32, fp16, bf16) to low precision 
numbers (fp8, int8) to save memory.

- Is effective in reducing the memory required for both training / 
inference.

- 8-bit quantization loses minimal performance, while 4-bit 
quantization is hard, can be harmful to model performance.
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Distilling the knowledge of 
larger models 
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Distillation

Knowledge 
and/or 
capabilities of 
a larger model

small model
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

Loss = -log p(of)
= Cross Entropy(y_pred, 
groundtruth)
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

loss = -log p(of)
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Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

y_predGroundtruth
(one-hot)
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Knowledge Distillation 

KD loss = Cross Entropy(y_large, y_pred)

small model next token probs
(y_pred)

Large model next token 
probs (y_large)
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Knowledge Distillation

Step 1: Initialize teacher 
model with a large and 
capable model

Step 2: Feed input data to 
both student and teacher 
(freezed)

Step 3: Use teacher 
outputs to train student 
(Cross Entropy)
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What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher 
model with a large and 
capable model

Step 2: Feed input data to 
both student and teacher 
(freezed)

Step 3: Use teacher 
generations (instead of 
outputs) to train student!
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Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(sampled text, y_pred)

y_predSampled output
(one-hot)
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What works better (a study in 2016)

Sequence-Level Knowledge Distillation (Kim & Rush, EMNLP 2016)

Use teacher generations 

Use teacher log-probs

https://aclanthology.org/D16-1139/
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Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually 
a larger model)

- The output can be log-probabilities or sampled outputs

- Effective in "distilling" the knowledge of large models to smaller ones.
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