JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Model Efficiency

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

Our models are getting larger!

180 &

. NLP model size is increasing exponentially OpenAl
S 144 GPT-3
= 170B
i= 175 Billion model parameters
£ 108 8 Million web pages
g 3 Million GPU hours*
o
£ 72
(O]
N 2
(7)) [:
T a5 . &) Coosle OpﬁAI NWABIA Microsoft
-8 Go Qﬁ@ OpenAl BERT GPT MBg'éthﬂLM T-NLG
= Transformer GPT 0.34B j (-2 17B

0 0 QSB O1,JB il 458

2017 2018 2020 2021
"i-i"-:! I Figure Credit: Song Han (MIT) 2

And consumes a lot of data!

Model Size in Tokens

GPT2

@OpenAI

XLNet

GPT3

@OpenAI

_—
SN R
JUU b

<SAANVIDIA.

3.3B
O

A

Megatron
<AANVIDIA.

IR
Anthropic Google) DeepMind

Assistant 780 B 15T
ANTHROP\C])

400 B

BLOOM
BigScience

BlenderBot3
facebook

Motivation

How much GPU memory (at least) do we need to perform inference/training?
(batch size=1, ignoring the KV cache)

Model Size Inference Memory Training Memory
(Llama 3 Arch) (~2x model size) (~7x model size)
8B 16GB 60GB
70B 140GB 500GB
405B 810GB 3.25TB

v/ ' Source: https://huggingface.co/blog/llama31#inference-memory-requirements

Where did all the memory go?

Longer sequences require much more memory in training!

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
1500 B0O0OOD
parameters
25k
gradients
6000
20k optimizer states
15k activations
4000

10k
2000 — m
_— >k
-~ F F

_— = = - -

07024 2048 4096 8192 16384 0'l024 2048 4096 8192 16384 o 1024 1024 2048 4096 8192 16384
Training Sequence Length (Number of Tokens)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
@ JOHNS HOPKINS

Memory consumption is not static

I
Memory profile of the first 4 training steps of Llama 1B
70
Memory reserved (max)
— — Memory requested (max)
R e i B e e e e m— Unknown
Autograd detail
50 s Gradient
Activation
s Optimizer state
40 mmes Parameter
® 30
During
_ 20 backward,
During the . \ activation
forwarq step, memory gets
the activations 0 freed, gradients
occupy most of IR R gets more
the memory 0 1 2 3 4 5 6 7 memory
Seconds

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

aa JOHMNS HOPEINS
Ce 6

Model Efficiency: Topics

1. Distributed Training
2. Quantization (Post Training Quantization)

3. Distillation

Chapter goal: Getting comfortable with various mathematical and systems
foundations for efficient deployment of LLMs.

o«

Distributed
Training

Distributed Training

1. Naive Data Parallelism
2. Sharding Optimizer States (ZeRO, FSDP)
3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

S
o«

Naive Data Parallelism

Dataset

e

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?

10

Naive Data Parallelism

Each GPU compute gradient with a single shard of data

[Gradienta] [Gradient 2] [Gradient 3]
1 I I
e 58 e
Model Model Model
GPU 1 Copy GPU 2 Copy GPU 3 Copy

Sar | 5| M
<] 0Tk 11

5
o«

Naive Data Parallelism

Gradient 3

Gradient 2

Gradient 1
N\ J

One GPU accumulates the gradients

(reduce in torch.distributed)

12

NCCL Operations: Reduce

= Nvidia Collective Communications Library (NCCL) - A library developed to provide
inter-GPU communications primitives (operations)

= Reduce: *Sums* over all *tensors* and stores it in a root GPU

‘rank0 { rankl i rank2 | rank 3 | ‘rank0 i rank1l i rank2 i rank 3 |
a a i e e ; | - (root) | |

in3 - out

qutﬂ] = sﬁmﬂﬂ?([i]]l

B 1annoe HOwR TS
:I'!'l HMNS HOPE N 13

5
o«

Naive Data Parallelism

Gradient 3

Gradient 2

Gradient 1
N\ J

One GPU accumulates the gradients

(reduce in torch.distributed)

14

Naive Data Parallelism

o T
o«

And send the accumulated gradient to all other

-

\
>

Gradient 3

N

Gradient 2

A

Gradient 1

[Gradient 3

N

[Gradient 2

[Gradient 1

A

GPUs (broadcast in torch.distributed)

s

Gradient 3

\
>

AL

Gradient 2

\
be

Gradient 1

LN

15

NCCL Operations: Broadcast

= Broadcast: Duplicates one tensor to all GPUs

‘rank0 i rank1l i rank 2 | rank 3 | ‘rank0 i rank1l i rank2 i rank 3 |
5 5 . (root) | = 5 5 5 5 5

in out out out out

outfi] I: in[i]

=
L

Naive Data Parallelism

Accumulate gradients across all GPUs and perform gradient updates

-

Gradient 3

N

\
>

Y

Gradient 2

A

Gradient 1

o«

(all_reduce in torch.distributed)

[Gradient 3

~N

N

[Gradient 2

[Gradient 1

A

Gradient 3

Y~

AL

Gradient 2

Y~

Gradient 1

LN

17

NCCL Operations: All Reduce

= All Reduce = Reduce + Broadcast

= Sum over input tensors, then duplicate it to all GPUs

i rank0 { rank1 | rank 2 | rank 3 |

B 1o oe H

rank0 { rank1 | rank 2 { rank 3 |

out

out

out

out

qutﬂ] = sﬁmﬂﬂx[i]fll

18

Naive Data Parallelism

Accumulate gradients across all GPUs and perform gradient updates

-

Gradient 3

N

\
>

Y

Gradient 2

A

Gradient 1

o«

(all_reduce in torch.distributed)

[Gradient 3

~N

N

[Gradient 2

[Gradient 1

A

Gradient 3

Y~

AL

Gradient 2

Y~

Gradient 1

LN

19

What is wrong with Naive DP 1

o«

Consumes too much memory in each GPU! GPU1 /

We need to store 5 copies of weights,/
which occupies 16 bytes per param

2 bytes for FP/BF16 model params

2 bytes for FP/BF16 gradients

4 bytes for FP32 master weights

(the thing you accumulate into in SGD, used in mixed precision training)
4 bytes for FP32 Adam first order estimates

4 bytes for FP32 Adam second order estimates

Slide Credit: Tatsunori Hashimoto (Stanford)

20

What is wrong with Naive DP

® &

GPT-2 FP16 Training
1.5B params 3GB memory >32 GB memory

Most of the memory are occupied by optimizer states.
Some are also occupied by residual states: activations, buffers and fragmented memory

S [OHNS HOPEINS

Naive DP — Requires too much memory!

. Parameters

. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * 16 bytes = 120 GB!

GPU1

132

=3] W A - n A T . .
' JOHN]__jm_h ' ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 22

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: Sharding Optimizer States

. Parameters
. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2+4) bytes = 60 GB!

PU21 PU 2
iE‘ 113

=3] B A - n A T . .
' JOHN]_-i”' o ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 23

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Update Parameters

Each GPU compute gradient with a single shard of data
(The same as naive DP)

[Gradient 1] [Gradient 2] [Gradient 3]
1
J E [
Model Model Model
Copy GPU2 Copy Copy

"wiu-- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

24

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Assuming that
GPUz1 stores parameter states for parameters A,
GPU2 stores states for params B,
GPU3 stores states for params C

[Gradient 1] [Gradient 2] [Gradient 3]
|5 | |
I\gg(;ell GPU 2

"wi..- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

25

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Split / shard the gradients into 3 parts!

(] aoa o] e]

[Gradient 1] [Gradient 2] [Gradient 3]

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 26

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in
torch.distributed)

A B C
—l N —
A B C
— b —
A
Gradient 1]
1
25 @}
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

27

https://arxiv.org/abs/1910.02054

NCCL Operations: Reduce Scatter

= reduce_scatter: each GPU stores the sum of a shard of the input.
= all_reduce: one GPU stores the sum over all the input.

rank 0 | rank1 | rank 2 | rank 3 | rank 0 { rank 1 { rank 2 | rank 3 |

outO

| | [ou]’
S o e-e e |
! ! || out2

out3

uutY[ﬁ = sum{ilnX[Y*cuulntH]]

S [OHNS HOPEINS

ZeRO Stage 1: How it works

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in
torch.distributed)

A B C
—l N —
A B C
— b —
A
Gradient 1]
1
25 @}
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

29

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

GPUz : update params A; GPU2: Updates Params B; GPU3:
updates params C. GPUx1 can only update params A since it

only stores optimizer states of params A.
[Updated A]

[Updated B]

[Updated C]

[Gradient 1] [Gradient 2] [Gradient 3]

3 e ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

30

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU sends updated params to every other GPU.
Finishing optimizer.step(). (all_gather in torch.distributed)

: Updated A

| Updated B |

\ Updated C)

~N

Gradient1

: Updated A

: Updated B

: Updated C

-

J

Gradient 2

: Updated A

: Updated B

\ Updated C ‘

Vs

Gradient 3

Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

31

https://arxiv.org/abs/1910.02054

Quiz: NCCL Operations: All Gather

= all_gather: every GPU performsa ___?_ operation in parallel.

i rank 0 | rank1 | rank 2 | rank 3 | i rank 0 { rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = in¥Y[i]

A.Reduce B. Broadcast C. Reduce_scatter

B 1o oe H

32

NCCL Operations: All Gather

= all_gather: every GPU performs a ___ broadcast____ operation in parallel.

i rank 0 | rank1 | rank 2 | rank 3 | i rank 0 { rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = in¥Y[i]

A.Reduce B. Broadcast C. Reduce_scatter

B 1o oe H

33

ZeRO Stage 1: How it works

Before all_gather

[Updated A]

[Updated B]

[Updated C]

[Gradient 1] [Gradient 2] [Gradient 3]

Model Model
Copy Copy

"wiu-- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

34

https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

After all_gather, every GPU has a updated copy of the

: Updated A

| Updated B |

\ Updated C)

~N

Gradient1

model

: Updated A

: Updated B

: Updated C

-

Gradient 2

: Updated A

: Updated B

\ Updated C ‘

Vs

Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

35

https://arxiv.org/abs/1910.02054

Summary: ZeRO 1

= reduce_scatter on the gradients: splitting the gradients into different GPUs
= Each GPU individually perform gradient updates
= all_gather on updated parameters

= Basically free! (Compared to Naive Data Parallelism)

o«

36

ZeRO Stage 1: How it works

Notice: Aside from the forward pass, GPU 1 only needs
gradients A, butin fact it stores A and Band C

(A]
—
A < You only need these
—
A
i Gradient 1] “ Hey GPUz, you don't need this (can be large)
@ 1% @
Model Model
Copy GPU 2 Copy

"ii“.-' JOLINS TIOPKIN ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

37

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: Sharding Gradients

. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2/3+4) bytes = 50 GB!

PU 1 PU 2
iE‘ 113

' JOHNS }_i”' o ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 38

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Splitting the gradient of a single layer during backprop, then immediately shard it!

A B C
—))
A B C

C

A B
A B C

[Gradient of layer X] [Gradient of layer X] [Gradient of layer X]
1
A
Model Model Model
Copy GPU2 Copy Copy

3 R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 39

https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Params A | Params A Params A

All-gather | [params B | Params B Params B
[Params C | Params C Params C

a8] Als]c als|c

Gradienta] Gradient 2 Gradient 3

Model Model
Copy Copy

Model
Copy

3 R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

Summary: ZeRO 12

-_reduce_ ‘ entsesplithing entsinte-different GPU

= Calculate gradients layer by layer and perform reduce_scatter, once layer is done,
free the gradient

= Each GPU individually perform gradient updates

= all_gather on updated parameters

= Almost free!

o«

41

ZeRO-3 (aka FSDP): Shard Everything!
H B

. Parameters
. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2/3+2/3+4) bytes = 40 GB!

PU1 PU 2
iE‘ 113

[] < '
' JOHNS HOPRY. ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 42

https://arxiv.org/abs/1910.02054

ZeRO Stage 3: How it works (simplified)

I
During forward pass, the parameters are gathered on-demand
Layer n-1 | |
| | All-gather
Layer n O 0O 0O Forward pass
[|] [||] [|| Flush parameters
Layer n+1 | |

Parameters

53 JOoHNS HOPEINS
e

43

ZeRO Stage 3: How it works (simplified)

|
During backward pass, the gradients are scattered (Reduce_Scatter)
GPU; GPU; GPUy
Layer n-1 |
|] | |
Reduce-scatter
O C] C O 3
Layer n f f * Backward pass
O 0O 0O
All-gather
] |] |
Layer n+1 | |

Parameters

B 1annoe HOwR TS
:I'!'l HINS ROPRLN 44

Communication Costs

Naive Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: 2x parameter (reduce_scatter + all_gather) - this is free! Might as
well always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is
(almost) free!

- ZeR0O-3: 3x parameter — which can be quite slow.

45

Where did all the memory go?

So far, we dealt with the optimizer states
but what about the activations?

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
15 B0O0O
B parameters
25k
W gradients
6000
£ 1000 20k optimizer states
o
E 4000 15k I activations
E
fia)
o 500 10k
2000 mm
— ok
e B 8§ B N
L& &8 8§ & [— —— — — ol Il BN N e
1024 2048 4096 B192 16384 1024 2048 4096 8192 16384 1024 2048 4096 8192 16384

Training Sequence Length (Number of Tokens)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
@_Iwma}im-m.\a 46

Prefix Caching

but what about the

S
o«

<System> You are a helpful assistant ... <System>
<User> | want to know how can | use the coffee machine <User>

<System> You are a helpful assistant ... <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant ... <System>
<User> Help me revise my email ... <User>

47

Prefix Caching

Storing the in CPU and retrieve it when needed.

<System> You are a helpful assistant ... <System>

KV Cache

CPU

But, can we slice the activations to fit them in different GPUs?

&) | - Yes, by Tensor Parallelism .

Tensor Parallelism

We can either cut
the weights W into
two columns
(Column Parallelism)

or into two rows
(Row Parallelism)

(4. 2)

@ JOHNS HOPKINS

(2,2)

(4,2)

49

Column-wise Tensor Parallelism

Cuts the weight
matrix Winto 2
columns

20 | 40

80 | 180

140|320

200|460

Y_0

w-0 20
10 80
20 140
(2.1) 200
(4,1)

Y_1

W1 40
30 180
N 40 320
(2,1) 460
(4.1)

Column linear

(4.2)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html

50

Row-wise Tensor Parallelism

X_0

Y.0
0 0o
. _ W_0
‘ | 2 20 | 60
X : E @ |10]30 y
: . 4 Rl 40 (120
of1]! i R (1.2)
: ! 6 - 60 |180 20 | 40
2|3 | Lz
' Lo (a1
! i (4.1) (4,2) 80 | 180
4|5 [N | v1
: L X1 140|320
67| !
v Dol 20|40 200460
. e , H w_1
Cuts the weight 62 e 60 |120 2
matrixWinto2 | -7 _______-* - --@-»{ 20|40 1001200
rows (1, 2)
140 | 280
7
(4,2)
(4.1)
Row linear

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html

QY JOHNS HOPKIN 51

Tensor Parallelism

w1
X

-*

Computing matrix
multiplications without
storing internal activations
(e.g. xW1)

In Feed-Forward Networks,
The dimension of

W1 is usually 4x the hidden
dimension.

- Column-wise

LI,F' JOHNS HOPKINS
" L

52

Tensor Parallelism: Llama Feed-Forward

self.wl = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x
)

self.w2 = RowParallelLinear(

hidden_dim, dim, bias=False, input_is_parallel=True, init_method=1lambda x: x

)

self.w3 = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x

def forward(self, x):
return self.w2(F.silu(self.wl(x)) x self.w3(x))

activations are element-wise operations, can be parallelized

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py

i ' 53

Tensor Parallelism: Llama Attention

Column Parallel for Query, Key and Vector and Row Parallel for attention output

self.wq = ColumnParallelLinear(

)

args.dim,

args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=1lambda x: x,

self.wk = ColumnParallelLinear(

)

args.dim,

self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wv = ColumnParallellLinear(

args.dim,
self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wo = RowParallelLinear(

args.n_heads x self.head_dim,
args.dim,
bias=False,

input_is_parallel=True,

init_method=1ambda x: X,

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py

54

Summary so far

- Data Parallelism
- Naive Data Parallelism
- NCCL Operations
(reduce, all_reduce, reduce_scatter, broadcast, all_gather)
- ZeRO-1, ZeRO-2, ZeRO-3
- Prefix Caching

- Tensor Parallelism
- Row-wise Tensor Parallelism
- Column-wise Tensor Parallelism

55

Tensor Parallelism

Memory Usage for 70B Model

Mo Parallelism (TP-1) TP=8 TP=16

o N N

120

100 B Model Parameters

80 B Gradients

. T T T

60 Optimizer States

40 B Activations

Memory Usage (GB)

20

I S s
0 I N N
1024 4096 16384 1024 4096 16384 1024 4096 16384
Sequence Length Sequence Length Sequence Length

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

OHMNS ROPRLNS
¥ o ,H.”‘f' 56

Throughput Scaling of Tensor Parallelism

Throughput Scaling with TP (3B Model) Maximum Batch Size per TP Value
20 i
I 10.8% Max Batch Size 20
W Performance Drop
|-12.2% o
= = B Tokens/sec/GPU
& 10k v 15 16
O S
) 42.7% =
u m 12
W g 10
5 =1
k= 5k E B
}E 65.6% ::é 5
=
N ’
0] 0
2 4 8 16 32 2 4 8 16 32
Tensor Parallelism (TP) Tensor Parallelism (TP)

A large drop in throughput when scaling beyond 8 GPUs (one node)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
? JOHNS HOPKINS

57

=
L

Throughput Scaling of Tensor Parallelism

Bandwidth (GB/s)

Communication Bandwidth by Number of Nodes (size=256MB)

400

300

200

100

== AllReduce

436.0 AllGather
ReduceScatter
361.
160.1
an.f e

64.9)
39

1 2 4 8 16 32 64

Mumber of Nodes

Throughput drops significantly once we go beyond one node!
Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html

58

Pipeline Parallelism

EENE

Training Dataset ML Model

Shard each layer of the model into individual GPUs:
Prevents the cost of syncing params

e S S

GPU 1 GPU 2 GPUN

Credit: Song Han (MIT)

B9 JoHNS HOPKINS
)

59

Pipeline Parallelism

Loss
/ \
Device 3 F. - B.
f * FO Bo Update
Device 2 F2 > 82 F0 Bo Update
T * F0 B0 Update
Device 1 F1 > B1 ;
evice F. Time > B, e
f ;
Device 0 0

Fo >
\\\\.//// Each GPU is only working for 1/PP =% of the time!

|dle/Work ratio=pp—1=
Gradients / PP 3

Pipe: E ling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019)
B 1auns HOPE NS
R s HOPRIN 60

https://arxiv.org/pdf/1811.06965

Pipeline Parallelism: Improvement

Solution: Splitting the data into mini-batches! (AFAB)

Fao | Fax | Faz | Fas| Bss | Baz | Bas | Bag Updale
Fzo | Fz1 | Faz | Fas Bos | Baz | Bz | Bo Update

Fio| F11| F12| F13 Bis | Biz2 | Bi1 | Bio Update

Foo | For | Foz | Fos Bubble Bos | Boz | Bos | Boo | Update

-
o«

Idle /Work Ratio=PP-1/M=3/4

Pipe: E

ling with Micro-B

h Pi

line Parallelism (Huang et al., NeurlPS 2019)

61

https://arxiv.org/pdf/1811.06965

Pipeline Parallelism

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
|dea: Do backward as early as possible, releasing activations on the fly

GPU

1 5 2 6 3 7/4 8 5 I7I89101112-91310

—

12341.2.354657687. -91011129I10I1113

171 | 2/2 33 4 4 5 5 6 6 7|7 8 8 9 9 10 10 11| 11 12| 12

Backward pass Device idle

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m==8)
GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019)

5 CXHIN 1
s oras 62

A W N

Time —»

https://arxiv.org/pdf/1811.06965

Pipeline Parallelism Throughput

16000 A

14000 ~

12000 A

8000

Tokens/s/GPU

6000

4000

2000

7o rones DUt @large drop as we increase the microbatch number

10000

Throughput Scaling with Pipeline Parallelism (1F1B schedule)

Number of Microbatches = PP Size - 1

I Tokens/sec/GPU
[Performance Drop

2 4 8 16 32
Pipeline Parallel Size

Tokens/s/GPU

16000

14000 A

12000 A

10000

8000

6000 -

4000

2000

Number of Microbatches = 32

I Tokens/s/GPU
[Performance Drop

2 4 8 16 R
Pipeline Parallel Size

A small drop in throughput when scaling beyond 8 GPUs (one node)

63

Interleaving Pipeline Parallelism (LLama3)

—

@ JOHNS HOPKINS

Backward pass
(first layers)

Device idle

64

Interleaved Pipeline Parallelism (DeepSeek)

Y
N

Device 0|0

Device 1 0|1

~

o|=|N |w
[
IS
()}
o
o
~
-
@
N
©
w
IS
o
()}
~

Device 2 o[1]2]| |3] |4 5 | o |6 1|7 2 |s 3 |o 4 5 6 7

© [N ||~
©|o|o |©

Device 3 1 2 3 4 0 |5 1 |6 2 |7 3 |8 4 |9 5 6 7 8

Device 4 0 1 2 0 |4 1 |5 2 |6 3 |7 4 |8 5 |9 6 7 8

Device 5 0 1 2 3 1| 4 2 |5 3 |6 4 |7 5 |8 6 |9 7 8 9

Device 6 o [1]0 2]11]1]3 2| 4 3 |5 4 |6 5 |7 6 |8 7 |9 8 9

=l (=R =R {"]
o

N

Device 7 | ololof1]1]1]2]2]2]3] s 4 4 |5 5 |6 6 |7 7 |8 8 |9 9

Time -
D Forward :' Backward l:l Backward for input D Backward for weights I:I Overlapped forward & Backward

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.

o«

What about (super) long sequences?

Suppose we want to split the sequence into different GPUs

Thisis a super long sequence of text.

Thisis a super long sequence of text
1
J E [
Model Model | | .. Model
Copy Copy GPU3 Copy

What about (super) long sequences?

- Feed Forward Network / LayerNorm is not affected by
splitting the sequence, each token is processed individually

- Butwhat about attention? Each token needs to compute dot
product with every other token.

67

Context Parallelism (Ring Attention)

Just pass the Key, Value
pairs around!

However, attention mask
is usually causal — Q1
does not need K2, V2, ...

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

o«

68

Context Parallelism (Ring Attention)

[&;]

o~

2

3 [erur

i — GPU 1 computes the pre-
g softmax-ed scores for
g’ Q1, Q2, Q3, Q4.. then
= [GPU3 | i

! becomes idle.

13

FRititieies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

&3 JOHNS HOPKING
e 6o

Context Parallelism (Ring Attention)

16

[]
Causal Attention Mask
1
2
3
4
5
6
S 7
©
c 8
o9
V4
o 10
|_
11
12
13
14
15

1T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GPU 3

Balancing the workload
for each individual GPUs.

Source: Striped Attention: Faster Ring Attention for Causal Transformers (Brandon et al., 2023)

@ JOHNS HOPKINS

70

Context Parallelism (Ring Attention)

Memory Usage for 8B Model

No Parallelism TP=2 CP=1 TP=2 CP=4
140
o 120
g 100 - Model Parameters
tg‘ —
o R e - Gradients
> .
& B0 Optimizer States
[=]
E Activations
U 40
=
2 [
0 BN N N e . I N N S .
4, E £ & ry ry 7| £ & 4 4 ¥ £ &, 4
02p 005 O35, 55 ~?JG)€ %2 095 “Osp, 55 319_)2 % 095 O35, "85, 3:%'

Sequence Length Sequence Length Sequence Length

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
@_Ium.\a HOPKINS 21

Summarizing

Sync Bandwidth Batch size | Easy to
overhead use?

DDP/ZeRO1

FSDP
(ZeRO3)

Pipeline

Tensor+seq

Per-batch

3x Per-FSDP
block

Per-pipeline

2x transformer
block

2* # param Linear
scallng
Linear 3 * # param Linear Very
Linear Activations Linear No
Linear 8*activations per- Noimpact No

layer all-reduce

Source: Tatsunori Hashimoto (Stanford)

72

Solutions

- DeepSeek V3: DP=1, PP=16, EP (Expert Parallelism) = 8
3.2 Training Framework

The training of DeepSeek-V3 is supported by the HAI-LLM framework, an efficient and lightweight training framework
crafted by our engineers from the ground up. On the whole, DeepSeek-V3 applies 16-way Pipeline Parallelism (PP) (Qi
et al,, 2023a), 64-way Expert Parallelism (EP) (Lepikhin et al., 2021) spanning 8 nodes, and ZeRO-1 Data Parallelism
(DP) (Rajbhandari et al., 2020).

- Llama 3: Staged Training

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU

8,192 8 1 16 64 8,192 32 16M 430 43%
16,384 8 1 16 128 8,192 16 16M 400 41%
16,384 8 16 16 8 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

=
L

73

Quantization

Quantization: Mapping from high to low
precision

I
— Continuous Signal Quantized Signal

Quantization Error

75

Numeric Data Types

= Example: 32-bit floating point number in IEEE 754 (FP32)

|

Sign: 1 bit

|
:

Exponent: 8 bits Fraction/Mantissa: 23 bits

Number = (_1)sign X (1 + Fraction) X 2Exponent—127

76

Floating Point Numbers

|\ l

Exponent: 8 bits Fraction/Mantissa: 23 bits
Sign: 1 bit Range Precision
FP4 (E2M
FP4 (E1M2) 4 (E2M1) FPZ (E3Mo)

—0 0000000

0 1 2 335

:

G9! JOHNS HOPKINS
)

77

loating Point Numbers

R
E t Fracti
|IEEE 754 Single Precision 32-bit Float (FP32) xponen raction
[T ; .
|IEEE 754 Half Precision 16-bit Float (FP16)
i 5 &
Google Brain Float (BF 16)
— More range, less precision 8 7
Nvidia FP8 (E4M3)
4 3

EA A PR
S0 JOHNS HOPEINS
et 78

Linear Quantization

Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

B
m n Zero point Scale
I ER A 1 1 1

How to find these numbers?

§7 JOHNS HOPKINS 79

Linear Quantization

[
Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

- Z)XS

floating-point integer integer floating-point

&
m n Zero point Scale
I ER A 1 E1 1
r = (q

@ JOHNS HOPKINS

80

Linear Quantization: Scale

"min 0 Fmax
7 Floating-point I | Tmax = S (Qmax — 7)
. range . T'min =— S (Qmin — 7)
xS
Floating-point
K Scale Tmax — Tmin
q S —
min 4 Imax Qmax — {Qmin

Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

i e TR 81

https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

.. r
min . . 0 max P S (qmin . Z)
7 Floating-point oo
range Z = Quin — 5
. 000 T'min
‘.“‘ ,~’.. Z = round (qmin -)
““ ...’ X S
" Floating-point
q " Scale
min Z Amax

Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Q) JOHNS HOPKIN 82

https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

"Absmax” Implementation
In practice, the weights are usually centered around zero (Z = 0):

Therefore, we can find scale by using only the max.
g Tmax — Tmin

Qmax — Ymin

T |'r|max

~iis T'min
S

Qmin — Z Gmin
Used in Pytorch, ONNX

0.8 0.9 1.0 11 1.2

Weight distribution of first conv
layer of ResNet-5o.

- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)
I'l JOHNS FOPRINS 83

T
b

https://arxiv.org/abs/1712.05877

Quantization of Language Models

There exists many outliers in activations (activations of the first layer MobileNetV2):

100 -

75 1

getlee-steligzl-ss---z:2llN=-

_25 -

_50 -

123456 7 8 91011121314151617181920212223242526272829303132
Output channel index

ot S5 FOPKIN Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019) 84

https://arxiv.org/abs/1906.04721

Quantization of Language Models

Fimin

a Floating-point

___ ___ Ne)

range
Outliers would make this
oXS extremely large!
" Floating-point)
’ Scale
L — - = >
min Z Gmax

Zero point

Example: 15, 0.1, 0.02, 1.0, 0.01->127,1,0, 8, 0
(Everything under o0.05 gets mapped to o)

Q) JOHNS ROPKINS Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019)

85

https://arxiv.org/abs/1906.04721

Quantization of Language Models

Fmin 0
& Floating-point |
range |
k Outliers would make this
&% extremely large!
s Floating-point ;
b Scale
e—— e === >
min Z Gmax
Zero point

Example: 15, 0.1, 0.02, 1.0, 0.01->127,1, 0, 8, 0
(Everything under o0.05 gets mapped to o)

Quantize each channel individually, each channel gets its own scale and Zero-point!

l_-_'l i

Q) JOHNS ROPKIN Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019) 86

https://arxiv.org/abs/1906.04721

Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

Method 80

\
— LLM.int8() | il /u/
8-bit baseline | —
07— 16-bit baseline o—°
> ./ |
b >
E Z“
= o7 \
g e Vi |
m '/
B / |
L= /
(%] /
o / [
@ 0.5 oe
N |
© e® ‘
(]
= \
0.4 ‘
emergence of — P!
outlier features \
0.3 I
N S N N N N Q > >
R N > R oS & W
Parameters
== 1 L I
g JOHNS HOPKINS LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)

ol

87

https://arxiv.org/abs/2208.07339

4

Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

89

| Method

|
100 | — UM.int8() | e
- 8-bit baseline | /"..
- .
I3 07— 16-bit baseline /cri/‘”
[9)
@ 80 | > .,/|
= O > 3
© I 2 e
m | 5 o7 !
v 506 »
g 60 i 2 |
b
S | £ |
S [8 |
I o 0.5
g 40 | c |
C
z | 8 |
= | = |
° 0.4 [
o 20 l
8 | emergence of emergence of —— |
GCJ I41/c>utlier features outlier features |
[9)
—_
= \ 0.3 y
a
0 2 4 6 8 10 12 i;“ (O@“ ;;b ,‘:.\Q’ b{\‘b RO &Q’
~ %

Parameters in billions
Parameters

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022) 88

https://arxiv.org/abs/2208.07339

Quantization of Language Models

p

LLM.iNt8() Z0lYectorwise QUantzation oo

o

45(-1 17,

12| 3 163

[] Regular values

[] outliers

1
1
i (1) Find vector-wise constants: Cp&Cy (2) Quantize (4) Dequantize E
] 1
: X*(127/C,) =X H
! X 12— F16(1Cy) 18 Outﬁ’; (CX®CW) E
S E1E1 0 " W (127/Cw) = Wyg 1277127 - Yo |
: 3fof3]2 02 E
i 1 0 12 L (3) Int8 Matmul i
H F16 :
] [: f w X W = Out :
5 210 : 18 18 132 :
le3l 0 e W ! Cx ;
P16 |32 T e m e
-1 2
FrIe 16-bit Decomposition
E (1) Decompose outliers (2) FP16 Matmul
1
1
E as[17 W XF]G W:E16= OUtFle Out
H 2 FP16
1 X [12}63 —1r
i 37183 F16
! F16

Keep outlier channels/ featuresin 16-bit, quantize the rest.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)

89

https://arxiv.org/abs/2208.07339

Quantization of Language Models

o T
o«

Parameters 125M 13B 27B 6.7B 13B

32-bit Float 2565 1591 1443 13.30 1245
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 1624 14776 1349 1394
Int8 absmax row-wise 3093 17.08 1524 14.13 16.49
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 25772 1594 1436 13.38 13.47
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 1443 13.24 1245

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)

20

https://arxiv.org/abs/2208.07339

Quantization of Language Models

Maps floating point numbers (fp32, fp16, bf16) to low precision
numbers (fp8, int8) to save memory.

s effective in reducing the memory required for both training /
inference.

8-bit quantization loses minimal performance, while 4-bit
quantization is hard, can be harmful to model performance.

921

Distilling the knowledge of

larger models

Distillation

Knowledge
andfor
capabilities of
a larger model

small model

93

Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

Loss = -log p(of)

—1.6 1

—1.8 1

—2.0 A

—2.2 1

—2.4 1

Next Token Distribution (Log-Probability)

= Cross Entropy(y_pred,
groundtruth)

,-T' JOHMS HOPELNS
v

Log-Probability

—2.6 1

—2.8 1

—3.0 1

—3.2 1

of that was the a to he in is

Token (Ordered by Probability)

and

94

Revisit: Standard Training (NLLloss)

prefix: The strange case ___

groundtruth: of

—1.6 1

—1.8 1

—2.0 A

—2.2 1

—2.4 1

Next Token Distribution (Log-Probability)

loss = -log p(of)

,-T' JOHMNS HOPEINS
v

Log-Probability

—2.6 1

—2.8 1

—3.0 1

—3.2 1

of that was the a to he in is

Token (Ordered by Probability)

95

Log-Probability

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

Next Token Distribution (Log-Probability)

0
-1
_2 B
34
—4
-5 . . - T T

of he was that the

B9 JoHNS HOPKINS
)

in a
Token (Ordered by Probability)

Groundtruth
(one-hot)

Log-Probability

-1.6 1

|
=
©

s

|
g
o

L

I
g
[N]

I
g
»

|
g
o

s

|
N
0o

s

|
w
=}

|
w
[N]

Next Token Distribution (Log-Probability)

of that was the a to he
Token (Ordered by Probability)

y_pred

96

Knowledge Distillation

KD loss = Cross Entropy(y_large, y_pred)
Next Token Distribution (Log-Probability) Next Token Distribution (Log-Probability)
~1.64
~1.84
-1.5
2.0
> —2.01 > 2]
3 H
€ 27
& &
g 25 g e
—-2.81
-3.0
-3.01
_32 4
that a he and is was to of in the of that was the a to he and
Token (Ordered by Probability) Token (Ordered by Probability)

Large model next token small model next token probs
probs (y_large) (y_pred)

=
3 JoHNS HOPKINS
L]] L 97

Knowledge Distillation

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

e
o«

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Z.\‘tutlcnt
—_—

Step 3: Use teacher
outputs to train student

(Cross Entropy)

Knowledge
Distillation

98

What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

e
o«

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Knowledge

Z.\‘tutlcnt ol :
O — Distillation

Step 3: Use teacher
generations (instead of
outputs) to train student!

29

Log-Probability

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(sampled text, y_pred)

Next Token Distribution (Log-Probability)

0
—1
_2 B
~3
—4
-5 . . - T r T

of he was that to the

B9 JoHNS HOPKINS
)

in a
Token (Ordered by Probability)

Sampled output
(one-hot)

Log-Probability

-1.6 1

|
=
©

s

|
g
o

L

I
g
[N]

I
g
»

|
g
o

s

|
N
0o

s

|
w
=}

|
w
[N]

Next Token Distribution (Log-Probability)

of that was the a to he
Token (Ordered by Probability)

y_pred

100

What works better (a study in 2016)

Model BLEUg—1 Ag—1 BLEUg—5 Ag—5

English — German WMT 2014

Teacher Baseline 4 x 1000 (Params: 221m) 17.7 — 19.5 —
Baseline 4+ Seq-Inter 19.6 +1.9 19.8 +0.3

Student Baseline 2 x 500 (Params: 84m) 14.7 — 17.6 —
Word-KD 15.4 +0.7 17.7 +0.1

Use teacher log-probs

Seq-KD \\ 18.9 +4.2 19.0 +1.4

Use teacher generations

Seqguence-L evel Knowledge Distillation (Kim & Rush, EMNLP 2016)
e 101

https://aclanthology.org/D16-1139/

Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually
a larger model)

- The output can be log-probabilities or sampled outputs
- Effective in "distilling" the knowledge of large models to smaller ones.

102

	Slide 1: Model Efficiency
	Slide 2: Our models are getting larger!
	Slide 3: And consumes a lot of data!
	Slide 4: Motivation
	Slide 5: Where did all the memory go?
	Slide 6: Memory consumption is not static
	Slide 7: Model Efficiency: Topics
	Slide 8
	Slide 9: Distributed Training
	Slide 10: Naïve Data Parallelism
	Slide 11: Naïve Data Parallelism
	Slide 12: Naïve Data Parallelism
	Slide 13: NCCL Operations: Reduce
	Slide 14: Naïve Data Parallelism
	Slide 15: Naïve Data Parallelism
	Slide 16: NCCL Operations: Broadcast
	Slide 17: Naïve Data Parallelism
	Slide 18: NCCL Operations: All Reduce
	Slide 19: Naïve Data Parallelism
	Slide 20: What is wrong with Naïve DP 
	Slide 21: What is wrong with Naïve DP
	Slide 22: Naïve DP – Requires too much memory!
	Slide 23: ZeRO Stage 1: Sharding Optimizer States
	Slide 24: ZeRO Stage 1: How it works
	Slide 25: ZeRO Stage 1: How it works
	Slide 26: ZeRO Stage 1: How it works
	Slide 27: ZeRO Stage 1: How it works
	Slide 28: NCCL Operations: Reduce Scatter
	Slide 29: ZeRO Stage 1: How it works
	Slide 30: ZeRO Stage 1: How it works
	Slide 31: ZeRO Stage 1: How it works
	Slide 32: Quiz: NCCL Operations: All Gather
	Slide 33: NCCL Operations: All Gather
	Slide 34: ZeRO Stage 1: How it works
	Slide 35: ZeRO Stage 1: How it works
	Slide 36: Summary: ZeRO 1
	Slide 37: ZeRO Stage 1: How it works
	Slide 38: ZeRO Stage 2: Sharding Gradients
	Slide 39: ZeRO Stage 2: How it works
	Slide 40: ZeRO Stage 2: How it works
	Slide 41: Summary: ZeRO 12
	Slide 42: ZeRO-3 (aka FSDP): Shard Everything!
	Slide 43: ZeRO Stage 3: How it works (simplified)
	Slide 44: ZeRO Stage 3: How it works (simplified)
	Slide 45: Communication Costs
	Slide 46: Where did all the memory go?
	Slide 47: Prefix Caching
	Slide 48: Prefix Caching
	Slide 49: Tensor Parallelism
	Slide 50: Column-wise Tensor Parallelism
	Slide 51: Row-wise Tensor Parallelism
	Slide 52: Tensor Parallelism
	Slide 53: Tensor Parallelism: Llama Feed-Forward
	Slide 54: Tensor Parallelism: Llama Attention
	Slide 55: Summary so far 
	Slide 56: Tensor Parallelism
	Slide 57: Throughput Scaling of Tensor Parallelism
	Slide 58: Throughput Scaling of Tensor Parallelism
	Slide 59: Pipeline Parallelism
	Slide 60: Pipeline Parallelism
	Slide 61: Pipeline Parallelism: Improvement
	Slide 62: Pipeline Parallelism
	Slide 63: Pipeline Parallelism Throughput
	Slide 64: Interleaving Pipeline Parallelism (LLama3)
	Slide 65: Interleaved Pipeline Parallelism (DeepSeek)
	Slide 66: What about (super) long sequences?
	Slide 67: What about (super) long sequences?
	Slide 68: Context Parallelism (Ring Attention)
	Slide 69: Context Parallelism (Ring Attention)
	Slide 70: Context Parallelism (Ring Attention)
	Slide 71: Context Parallelism (Ring Attention)
	Slide 72: Summarizing
	Slide 73: Solutions
	Slide 74
	Slide 75: Quantization: Mapping from high to low precision
	Slide 76: Numeric Data Types
	Slide 77: Floating Point Numbers
	Slide 78: Floating Point Numbers
	Slide 79: Linear Quantization
	Slide 80: Linear Quantization
	Slide 81: Linear Quantization: Scale
	Slide 82: Linear Quantization: Zero Point
	Slide 83: Linear Quantization: Zero Point
	Slide 84: Quantization of Language Models
	Slide 85: Quantization of Language Models
	Slide 86: Quantization of Language Models
	Slide 87: Quantization of Language Models
	Slide 88: Quantization of Language Models
	Slide 89: Quantization of Language Models
	Slide 90: Quantization of Language Models
	Slide 91: Quantization of Language Models
	Slide 92
	Slide 93: Distillation
	Slide 94: Revisit: Standard Training (NLLloss)
	Slide 95: Revisit: Standard Training (NLLloss)
	Slide 96: Revisit: Standard Training (NLLloss)
	Slide 97: Knowledge Distillation
	Slide 98: Knowledge Distillation
	Slide 99: What if the teacher is Proprietary (GPT)?
	Slide 100: Revisit: Standard Training (NLLloss)
	Slide 101: What works better (a study in 2016)
	Slide 102: Knowledge Distillation

