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Our models are getting larger!
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And consumes a lot of data!

Model Size in Tokens

GPT2

@OpenAI

XLNet

GPT3

@OpenAI

_—
SN R
JUU b

<SAANVIDIA.

3.3B
O

A

Megatron
<AANVIDIA.

IR
Anthropic Google ) DeepMind

Assistant 780 B 15T
ANTHROP\C ] )

400 B

BLOOM
BigScience

BlenderBot3
facebook




Motivation

How much GPU memory (at least) do we need to perform inference/training?
(batch size=1, ignoring the KV cache)

Model Size Inference Memory Training Memory
(Llama 3 Arch) (~2x model size) (~7x model size)
8B 16GB 60GB
70B 140GB 500GB
405B 810GB 3.25TB

v/ ' Source: https://huggingface.co/blog/llama31#inference-memory-requirements



Where did all the memory go?

Longer sequences require much more memory in training!

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
1500 B0O0OOD
parameters
25k
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20k optimizer states
15k activations
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Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
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Memory consumption is not static

I
Memory profile of the first 4 training steps of Llama 1B
70
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— — Memory requested (max)
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Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
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Model Efficiency: Topics

1. Distributed Training
2. Quantization (Post Training Quantization)

3. Distillation

Chapter goal: Getting comfortable with various mathematical and systems
foundations for efficient deployment of LLMs.
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Distributed
Training




Distributed Training

1. Naive Data Parallelism
2. Sharding Optimizer States (ZeRO, FSDP)
3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

S
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Naive Data Parallelism

Dataset

e

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?

10



Naive Data Parallelism

Each GPU compute gradient with a single shard of data

[ Gradienta ] [ Gradient 2 ] [ Gradient 3 ]
1 I I
e 58 e
Model Model Model
GPU 1 Copy GPU 2 Copy GPU 3 Copy
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Naive Data Parallelism

Gradient 3

Gradient 2

Gradient 1
N\ J

One GPU accumulates the gradients

(reduce in torch.distributed)
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NCCL Operations: Reduce

= Nvidia Collective Communications Library (NCCL) - A library developed to provide
inter-GPU communications primitives (operations)

= Reduce: *Sums* over all *tensors* and stores it in a root GPU

‘rank0 { rankl i rank2 | rank 3 | ‘rank0 i rank1l i rank2 i rank 3 |
a a i e e ; | - (root) | |

in3 - out

qutﬂ] = sﬁmﬂﬂ?([i]]l
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Naive Data Parallelism

Gradient 3

Gradient 2

Gradient 1
N\ J

One GPU accumulates the gradients

(reduce in torch.distributed)
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Naive Data Parallelism

o T
o«

And send the accumulated gradient to all other

-

\
>

Gradient 3

N

Gradient 2

A

Gradient 1

[ Gradient 3

N

[ Gradient 2

[ Gradient 1

A

GPUs (broadcast in torch.distributed)
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Gradient 3
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NCCL Operations: Broadcast

= Broadcast: Duplicates one tensor to all GPUs

‘rank0 i rank1l i rank 2 | rank 3 | ‘rank0 i rank1l i rank2 i rank 3 |
5 5 . (root) | = 5 5 5 5 5

in out out out out

outfi] I: in[i]
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Naive Data Parallelism

Accumulate gradients across all GPUs and perform gradient updates

-

Gradient 3

N

\
>

Y

Gradient 2

A

Gradient 1

o«

(all_reduce in torch.distributed)

[ Gradient 3

~N

N

[ Gradient 2

[ Gradient 1

A

Gradient 3

Y~

AL

Gradient 2

Y~

Gradient 1

LN
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NCCL Operations: All Reduce

= All Reduce = Reduce + Broadcast

= Sum over input tensors, then duplicate it to all GPUs

i rank0 { rank1 | rank 2 | rank 3 |

B 1o oe H

rank0 { rank1 | rank 2 { rank 3 |

out

out

out

out

qutﬂ] = sﬁmﬂﬂx[i]fll
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Naive Data Parallelism

Accumulate gradients across all GPUs and perform gradient updates

-

Gradient 3

N

\
>

Y

Gradient 2

A

Gradient 1

o«

(all_reduce in torch.distributed)

[ Gradient 3

~N

N

[ Gradient 2

[ Gradient 1

A

Gradient 3
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Gradient 2
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Gradient 1
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What is wrong with Naive DP 1

o«

Consumes too much memory in each GPU! GPU1 /

We need to store 5 copies of weights,/
which occupies 16 bytes per param

2 bytes for FP/BF16 model params

2 bytes for FP/BF16 gradients

4 bytes for FP32 master weights

(the thing you accumulate into in SGD, used in mixed precision training)
4 bytes for FP32 Adam first order estimates

4 bytes for FP32 Adam second order estimates

Slide Credit: Tatsunori Hashimoto (Stanford)
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What is wrong with Naive DP

® &

GPT-2 FP16 Training
1.5B params 3GB memory >32 GB memory

Most of the memory are occupied by optimizer states.
Some are also occupied by residual states: activations, buffers and fragmented memory

S [OHNS HOPEINS



Naive DP — Requires too much memory!

. Parameters

. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * 16 bytes = 120 GB!

GPU1

132

=3 ] W A - n A T . .
' JOHN ]__jm_h ' ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 22



https://arxiv.org/abs/1910.02054

ZeRO Stage 1: Sharding Optimizer States

. Parameters
. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2+4) bytes = 60 GB!

PU21 PU 2
iE‘ 113

=3 ] B A - n A T . .
' JOHN ]_-i”' o ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 23



https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Update Parameters

Each GPU compute gradient with a single shard of data
(The same as naive DP)

[ Gradient 1 ] [ Gradient 2 ] [ Gradient 3 ]
1
J E [
Model Model Model
Copy GPU2 Copy Copy

"wiu-- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

24


https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Assuming that
GPUz1 stores parameter states for parameters A,
GPU2 stores states for params B,
GPU3 stores states for params C

[ Gradient 1 ] [ Gradient 2 ] [ Gradient 3 ]
|5 | |
I\gg(;ell GPU 2

"wi..- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

25


https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Split / shard the gradients into 3 parts!

(] aoa o] e ]

[ Gradient 1 ] [ Gradient 2 ] [ Gradient 3 ]

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 26



https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in
torch.distributed)

A B C
—l N —
A B C
— b —
A
Gradient 1 ]
1
25 @}
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

NCCL Operations: Reduce Scatter

= reduce_scatter: each GPU stores the sum of a shard of the input.
= all_reduce: one GPU stores the sum over all the input.

rank 0 | rank1 | rank 2 | rank 3 | rank 0 { rank 1 { rank 2 | rank 3 |

outO

| | [ou ]’
S o e-e e |
! ! || out2

out3

uutY[ﬁ = sum{ilnX[Y*cuulntH]]
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ZeRO Stage 1: How it works

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in
torch.distributed)

A B C
—l N —
A B C
— b —
A
Gradient 1 ]
1
25 @}
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

GPUz : update params A; GPU2: Updates Params B; GPU3:
updates params C. GPUx1 can only update params A since it

only stores optimizer states of params A.
[ Updated A ]

[ Updated B ]

[ Updated C ]

[ Gradient 1 ] [ Gradient 2 ] [ Gradient 3 ]

3 e ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

30


https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

Each GPU sends updated params to every other GPU.
Finishing optimizer.step(). (all_gather in torch.distributed)

: Updated A

| Updated B |

\ Updated C )

~N

Gradient1

: Updated A

: Updated B

: Updated C

-

J

Gradient 2

: Updated A

: Updated B

\ Updated C ‘

Vs

Gradient 3

Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

Quiz: NCCL Operations: All Gather

= all_gather: every GPU performsa ___?_ operation in parallel.

i rank 0 | rank1 | rank 2 | rank 3 | i rank 0 { rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = in¥Y[i]

A.Reduce B. Broadcast C. Reduce_scatter

B 1o oe H
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NCCL Operations: All Gather

= all_gather: every GPU performs a ___ broadcast____ operation in parallel.

i rank 0 | rank1 | rank 2 | rank 3 | i rank 0 { rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = in¥Y[i]

A.Reduce B. Broadcast C. Reduce_scatter

B 1o oe H

33



ZeRO Stage 1: How it works

Before all_gather

[ Updated A ]

[ Updated B ]

[ Updated C ]

[ Gradient 1 ] [ Gradient 2 ] [ Gradient 3 ]

Model Model
Copy Copy

"wiu-- R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

ZeRO Stage 1: How it works

After all_gather, every GPU has a updated copy of the

: Updated A

| Updated B |

\ Updated C )

~N

Gradient1

model

: Updated A

: Updated B

: Updated C

-

Gradient 2

: Updated A

: Updated B

\ Updated C ‘

Vs

Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

Summary: ZeRO 1

= reduce_scatter on the gradients: splitting the gradients into different GPUs
= Each GPU individually perform gradient updates
= all_gather on updated parameters

= Basically free! (Compared to Naive Data Parallelism)

o«
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ZeRO Stage 1: How it works

Notice: Aside from the forward pass, GPU 1 only needs
gradients A, butin fact it stores A and Band C

(A ]
—
A < You only need these
—
A
i Gradient 1 ] “ Hey GPUz, you don't need this (can be large)
@ 1% @
Model Model
Copy GPU 2 Copy

"ii“.-' JOLINS TIOPKIN ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)
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https://arxiv.org/abs/1910.02054

ZeRO Stage 2: Sharding Gradients

. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2/3+4) bytes = 50 GB!

PU 1 PU 2
iE‘ 113

' JOHNS }_i”' o ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 38



https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Splitting the gradient of a single layer during backprop, then immediately shard it!

A B C
— ) )
A B C

C

A B
A B C

[ Gradient of layer X ] [ Gradient of layer X ] [ Gradient of layer X ]
1
A
Model Model Model
Copy GPU2 Copy Copy

3 R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 39



https://arxiv.org/abs/1910.02054

ZeRO Stage 2: How it works

Params A | Params A Params A

All-gather | [ params B | Params B Params B
[ Params C | Params C Params C

a8 ] Als]c als|c

Gradienta ] Gradient 2 Gradient 3

Model Model
Copy Copy

Model
Copy

3 R ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)


https://arxiv.org/abs/1910.02054

Summary: ZeRO 12

-_reduce_ ‘ entsesplithing entsinte-different GPU

= Calculate gradients layer by layer and perform reduce_scatter, once layer is done,
free the gradient

= Each GPU individually perform gradient updates

= all_gather on updated parameters

= Almost free!

o«
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ZeRO-3 (aka FSDP): Shard Everything!
H B

. Parameters
. Gradients

. Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2/3+2/3+4) bytes = 40 GB!

PU1 PU 2
iE‘ 113

[ ] < '
' JOHNS HOPRY. ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019) 42



https://arxiv.org/abs/1910.02054

ZeRO Stage 3: How it works (simplified)

I
During forward pass, the parameters are gathered on-demand
Layer n-1 | |
| | All-gather
Layer n O 0O 0O Forward pass
[ | ] [ || ] [ || Flush parameters
Layer n+1 | |

Parameters

53 JOoHNS HOPEINS
e
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ZeRO Stage 3: How it works (simplified)

|
During backward pass, the gradients are scattered (Reduce_Scatter)
GPU; GPU; GPUy
Layer n-1 |
| ] | |
Reduce-scatter
O C ] C O 3
Layer n f f * Backward pass
O 0O 0O
All-gather
] | ] |
Layer n+1 | |

Parameters

B 1annoe HOwR TS
:I'!'l HINS ROPRLN 44



Communication Costs

Naive Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: 2x parameter (reduce_scatter + all_gather) - this is free! Might as
well always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is
(almost) free!

- ZeR0O-3: 3x parameter — which can be quite slow.

45



Where did all the memory go?

So far, we dealt with the optimizer states
but what about the activations?

Meta-Llama-3.1-8B Meta-Llama-3.1-70B Meta-Llama-3.1-405B
15 B0O0O
B parameters
25k
W gradients
6000
£ 1000 20k optimizer states
o
E 4000 15k I activations
E
fia)
o 500 10k
2000  mm
— ok
e B 8§ B N
L& &8 8§ & [ — —— — — ol Il BN N e
1024 2048 4096 B192 16384 1024 2048 4096 8192 16384 1024 2048 4096 8192 16384

Training Sequence Length (Number of Tokens)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
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Prefix Caching

but what about the

S
o«

<System> You are a helpful assistant ... <System>
<User> | want to know how can | use the coffee machine <User>

<System> You are a helpful assistant ... <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant ... <System>
<User> Help me revise my email ... <User>

47



Prefix Caching

Storing the in CPU and retrieve it when needed.

<System> You are a helpful assistant ... <System>

KV Cache

CPU

But, can we slice the activations to fit them in different GPUs?

&) | - Yes, by Tensor Parallelism .



Tensor Parallelism

We can either cut
the weights W into
two columns
(Column Parallelism)

or into two rows
(Row Parallelism)

(4. 2)

@ JOHNS HOPKINS

(2,2)

(4,2)

49



Column-wise Tensor Parallelism

Cuts the weight
matrix Winto 2
columns

20 | 40

80 | 180

140|320

200|460

Y_0

w-0 20
10 80
20 140
(2.1) 200
(4,1)

Y_1

W1 40
30 180
N 40 320
(2,1) 460
(4.1)

Column linear

(4.2)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html
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Row-wise Tensor Parallelism

X_0

Y.0
0 0o
. _ W_0
‘ | 2 20 | 60
X : E @ |10]30 y
: . 4 Rl 40 (120
of1]! i R (1.2)
: ! 6 - 60 |180 20 | 40
2|3 | Lz
' Lo (a1
! i (4.1) (4,2) 80 | 180
4|5 [N | v1
: L X1 140|320
67| !
v Dol 20|40 200460
. e , H w_1
Cuts the weight 62 e 60 |120 2
matrixWinto2 | -7 _______-* - --@-»{ 20|40 1001200
rows (1, 2)
140 | 280
7
(4,2)
(4.1)
Row linear

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html
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Tensor Parallelism

w1
X

-*

Computing matrix
multiplications without
storing internal activations
(e.g. xW1)

In Feed-Forward Networks,
The dimension of

W1 is usually 4x the hidden
dimension.

- Column-wise

LI,F' JOHNS HOPKINS
" L
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Tensor Parallelism: Llama Feed-Forward

self.wl = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x
)

self.w2 = RowParallelLinear(

hidden_dim, dim, bias=False, input_is_parallel=True, init_method=1lambda x: x

)

self.w3 = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=1lambda x: x

def forward(self, x):
return self.w2(F.silu(self.wl(x)) x self.w3(x))

activations are element-wise operations, can be parallelized

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py
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Tensor Parallelism: Llama Attention

Column Parallel for Query, Key and Vector and Row Parallel for attention output

self.wq = ColumnParallelLinear(

)

args.dim,

args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=1lambda x: x,

self.wk = ColumnParallelLinear(

)

args.dim,

self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wv = ColumnParallellLinear(

args.dim,
self.n_kv_heads * self.head_dim,
bias=False,

gather_output=False,
init_method=1lambda x: x,

self.wo = RowParallelLinear(

args.n_heads x self.head_dim,
args.dim,
bias=False,

input_is_parallel=True,

init_method=1ambda x: X,

Source: https://github.com/meta-llama/llama/blob/main/llama/model. py
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Summary so far

- Data Parallelism
- Naive Data Parallelism
- NCCL Operations
(reduce, all_reduce, reduce_scatter, broadcast, all_gather)
- ZeRO-1, ZeRO-2, ZeRO-3
- Prefix Caching

- Tensor Parallelism
- Row-wise Tensor Parallelism
- Column-wise Tensor Parallelism

55



Tensor Parallelism

Memory Usage for 70B Model

Mo Parallelism (TP-1) TP=8 TP=16

o N N

120

100 B Model Parameters

80 B Gradients

. T T T

60 Optimizer States

40 B Activations

Memory Usage (GB)

20

I S s
0 I N N
1024 4096 16384 1024 4096 16384 1024 4096 16384
Sequence Length Sequence Length Sequence Length

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

OHMNS ROPRLNS
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Throughput Scaling of Tensor Parallelism

Throughput Scaling with TP (3B Model) Maximum Batch Size per TP Value
20 i
I 10.8% Max Batch Size 20
W Performance Drop
|-12.2% o
= = B Tokens/sec/GPU
& 10k v 15 16
O S
) 42.7% =
u m 12
W g 10
5 =1
k= 5k E B
}E 65.6% ::é 5
=
N ’
0] 0
2 4 8 16 32 2 4 8 16 32
Tensor Parallelism (TP) Tensor Parallelism (TP)

A large drop in throughput when scaling beyond 8 GPUs (one node)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
? JOHNS HOPKINS
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L

Throughput Scaling of Tensor Parallelism

Bandwidth (GB/s)

Communication Bandwidth by Number of Nodes (size=256MB)

400

300

200

100

== AllReduce

436.0 AllGather
ReduceScatter
361.
160.1
an.f e

64.9 )
39

1 2 4 8 16 32 64

Mumber of Nodes

Throughput drops significantly once we go beyond one node!
Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index. html
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Pipeline Parallelism

EENE

Training Dataset ML Model

Shard each layer of the model into individual GPUs:
Prevents the cost of syncing params

e S S

GPU 1 GPU 2 GPUN

Credit: Song Han (MIT)

B9 JoHNS HOPKINS
)
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Pipeline Parallelism

Loss
/ \
Device 3 F. - B.
f * FO Bo Update
Device 2 F2 > 82 F0 Bo Update
T * F0 B0 Update
Device 1 F1 > B1 ;
evice F. Time > B, e
f ;
Device 0 0

Fo >
\\\\.//// Each GPU is only working for 1/PP =% of the time!

|dle/Work ratio=pp—1=
Gradients / PP 3

Pipe: E ling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019)
B 1auns HOPE NS
R s HOPRIN 60


https://arxiv.org/pdf/1811.06965

Pipeline Parallelism: Improvement

Solution: Splitting the data into mini-batches! (AFAB)

Fao | Fax | Faz | Fas| Bss | Baz | Bas | Bag Updale
Fzo | Fz1 | Faz | Fas Bos | Baz | Bz | Bo Update

Fio| F11| F12| F13 Bis | Biz2 | Bi1 | Bio Update

Foo | For | Foz | Fos Bubble Bos | Boz | Bos | Boo | Update

-
o«

Idle /Work Ratio=PP-1/M=3/4

Pipe: E

ling with Micro-B

h Pi

line Parallelism (Huang et al., NeurlPS 2019)
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https://arxiv.org/pdf/1811.06965

Pipeline Parallelism

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
|dea: Do backward as early as possible, releasing activations on the fly

GPU

1 5 2 6 3 7/4 8 5 I7I89101112-91310

—

12341.2.354657687. -91011129I10I1113

171 | 2/2 33 4 4 5 5 6 6 7|7 8 8 9 9 10 10 11| 11 12| 12

Backward pass Device idle

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m==8)
GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurlPS 2019)

5 CXHIN 1
s oras 62
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https://arxiv.org/pdf/1811.06965

Pipeline Parallelism Throughput

16000 A

14000 ~

12000 A

8000

Tokens/s/GPU

6000

4000

2000

7o rones DUt @large drop as we increase the microbatch number

10000

Throughput Scaling with Pipeline Parallelism (1F1B schedule)

Number of Microbatches = PP Size - 1

I Tokens/sec/GPU
[ Performance Drop

2 4 8 16 32
Pipeline Parallel Size

Tokens/s/GPU

16000

14000 A

12000 A

10000

8000

6000 -

4000

2000

Number of Microbatches = 32

I Tokens/s/GPU
[ Performance Drop

2 4 8 16 R
Pipeline Parallel Size

A small drop in throughput when scaling beyond 8 GPUs (one node)
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Interleaving Pipeline Parallelism (LLama3)

—

@ JOHNS HOPKINS

Backward pass
(first layers)

Device idle

64




Interleaved Pipeline Parallelism (DeepSeek)

Y
N

Device 0|0

Device 1 0|1

~

o|=|N |w
[
IS
()}
o
o
~
-
@
N
©
w
IS
o
()}
~

Device 2 o[1]2]| |3] |4 5 | o |6 1|7 2 |s 3 |o 4 5 6 7

© [N ||~
©|o|o |©

Device 3 1 2 3 4 0 |5 1 |6 2 |7 3 |8 4 |9 5 6 7 8

Device 4 0 1 2 0 |4 1 |5 2 |6 3 |7 4 |8 5 |9 6 7 8

Device 5 0 1 2 3 1| 4 2 |5 3 |6 4 |7 5 |8 6 |9 7 8 9

Device 6 o [1]0 2]11]1]3 2| 4 3 |5 4 |6 5 |7 6 |8 7 |9 8 9

=l (=R =R {"]
o

N

Device 7 | ololof1]1]1]2]2]2]3] s 4 4 |5 5 |6 6 |7 7 |8 8 |9 9

Time -
D Forward :' Backward l:l Backward for input D Backward for weights I:I Overlapped forward & Backward

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.
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What about (super) long sequences?

Suppose we want to split the sequence into different GPUs

Thisis a super long sequence of text.

Thisis a super long sequence of text
1
J E [
Model Model | | .. Model
Copy Copy GPU3 Copy




What about (super) long sequences?

- Feed Forward Network / LayerNorm is not affected by
splitting the sequence, each token is processed individually

- Butwhat about attention? Each token needs to compute dot
product with every other token.
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Context Parallelism (Ring Attention)

Just pass the Key, Value
pairs around!

However, attention mask
is usually causal — Q1
does not need K2, V2, ...

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

o«
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Context Parallelism (Ring Attention)

[&;]

o~

2

3 [erur

i — GPU 1 computes the pre-
g softmax-ed scores for
g’ Q1, Q2, Q3, Q4.. then
= [ GPU3 | i

! becomes idle.

13

FRititieies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

&3 JOHNS HOPKING
e 6o



Context Parallelism (Ring Attention)

16

[ ]
Causal Attention Mask
1
2
3
4
5
6
S 7
©
c 8
o9
V4
o 10
|_
11
12
13
14
15

1T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GPU 3

Balancing the workload
for each individual GPUs.

Source: Striped Attention: Faster Ring Attention for Causal Transformers (Brandon et al., 2023)

@ JOHNS HOPKINS
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Context Parallelism (Ring Attention)

Memory Usage for 8B Model

No Parallelism TP=2 CP=1 TP=2 CP=4
140
o 120
g 100 - Model Parameters
tg‘ —
o R e - Gradients
> .
& B0 Optimizer States
[=]
E Activations
U 40
=
2 [
0 BN N N e . I N N S .
4, E £ & ry ry 7| £ & 4 4 ¥ £ &, 4
02p 005 O35, 55 ~?JG)€ %2 095 “Osp, 55 319_)2 % 095 O35, "85, 3:%'

Sequence Length Sequence Length Sequence Length

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html
@_Ium.\a HOPKINS 21



Summarizing

Sync Bandwidth Batch size | Easy to
overhead use?

DDP/ZeRO1

FSDP
(ZeRO3)

Pipeline

Tensor+seq

Per-batch

3x Per-FSDP
block

Per-pipeline

2x transformer
block

2* # param Linear
scallng
Linear 3 * # param Linear Very
Linear Activations Linear No
Linear 8*activations per- Noimpact No

layer all-reduce

Source: Tatsunori Hashimoto (Stanford)
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Solutions

- DeepSeek V3: DP=1, PP=16, EP (Expert Parallelism) = 8
3.2 Training Framework

The training of DeepSeek-V3 is supported by the HAI-LLM framework, an efficient and lightweight training framework
crafted by our engineers from the ground up. On the whole, DeepSeek-V3 applies 16-way Pipeline Parallelism (PP) (Qi
et al,, 2023a), 64-way Expert Parallelism (EP) (Lepikhin et al., 2021) spanning 8 nodes, and ZeRO-1 Data Parallelism
(DP) (Rajbhandari et al., 2020).

- Llama 3: Staged Training

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU

8,192 8 1 16 64 8,192 32 16M 430 43%
16,384 8 1 16 128 8,192 16 16M 400 41%
16,384 8 16 16 8 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

=
L
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Quantization




Quantization: Mapping from high to low
precision

I
— Continuous Signal Quantized Signal

Quantization Error
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Numeric Data Types

= Example: 32-bit floating point number in IEEE 754 (FP32)

|

Sign: 1 bit

|
:

Exponent: 8 bits Fraction/Mantissa: 23 bits

Number = (_1)sign X (1 + Fraction) X 2Exponent—127
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Floating Point Numbers

|\ l

Exponent: 8 bits Fraction/Mantissa: 23 bits
Sign: 1 bit Range Precision
FP4 (E2M
FP4 (E1M2) 4 (E2M1) FPZ (E3Mo)

—0 0000000

0 1 2 335

:

G9! JOHNS HOPKINS
)

77



loating Point Numbers

R
E t Fracti
|IEEE 754 Single Precision 32-bit Float (FP32) xponen raction
[T ; .
|IEEE 754 Half Precision 16-bit Float (FP16)
i 5 &
Google Brain Float (BF 16)
— More range, less precision 8 7
Nvidia FP8 (E4M3)
4 3

EA A PR
S0 JOHNS HOPEINS
et 78



Linear Quantization

Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

B
m n Zero point Scale
I ER A 1 1 1

How to find these numbers?

§7 JOHNS HOPKINS 79



Linear Quantization

[
Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

- Z)XS

floating-point integer integer floating-point

&
m n Zero point Scale
I ER A 1 E1 1
r = ( q

@ JOHNS HOPKINS
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Linear Quantization: Scale

"min 0 Fmax
7 Floating-point I | Tmax = S (Qmax — 7 )
. range . T'min =— S (Qmin — 7 )
xS
Floating-point
K Scale Tmax — Tmin
q S —
min 4 Imax Qmax — {Qmin

Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

i e TR 81


https://arxiv.org/abs/1712.05877

Linear Quantization: Zero Point

.. r
min . . 0 max P S (qmin . Z)
7 Floating-point oo
range Z = Quin — 5
. 000 T'min
‘.“‘ ,~’.. Z = round (qmin - )
““ ...’ X S
" Floating-point
q " Scale
min Z Amax

Zero point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Q) JOHNS HOPKIN 82
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Linear Quantization: Zero Point

"Absmax” Implementation
In practice, the weights are usually centered around zero (Z = 0):

Therefore, we can find scale by using only the max.
g Tmax — Tmin

Qmax — Ymin

T |'r|max

~iis T'min
S

Qmin — Z Gmin
Used in Pytorch, ONNX

0.8 0.9 1.0 11 1.2

Weight distribution of first conv
layer of ResNet-5o.

-  Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)
I'l JOHNS FOPRINS 83
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Quantization of Language Models

There exists many outliers in activations (activations of the first layer MobileNetV2):

100 -

75 1

getlee-steligzl-ss---z:2llN=-

_25 -

_50 -

123456 7 8 91011121314151617181920212223242526272829303132
Output channel index

ot S5 FOPKIN Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019) 84
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Quantization of Language Models

Fimin

a Floating-point

___ ___ Ne)

range
Outliers would make this
oXS extremely large!
" Floating-point )
’ Scale
L — - = >
min Z Gmax

Zero point

Example: 15, 0.1, 0.02, 1.0, 0.01->127,1,0, 8, 0
(Everything under o0.05 gets mapped to o)

Q) JOHNS ROPKINS Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019)
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Quantization of Language Models

Fmin 0
& Floating-point |
range |
k Outliers would make this
&% extremely large!
s Floating-point ;
b Scale
e—— e === >
min Z Gmax
Zero point

Example: 15, 0.1, 0.02, 1.0, 0.01->127,1, 0, 8, 0
(Everything under o0.05 gets mapped to o)

Quantize each channel individually, each channel gets its own scale and Zero-point!

l_-_'l i

Q) JOHNS ROPKIN Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel etal., ICCV 2019) 86
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Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

Method 80

\
— LLM.int8() | il /u/
8-bit baseline | —
07— 16-bit baseline o—°
> ./ |
b >
E Z“
= o7 \
g e Vi |
m '/
B / |
L= /
(%] /
o / [
@ 0.5 oe
N |
© e® ‘
(]
= \
0.4 ‘
emergence of — P!
outlier features \
0.3 I
N S N N N N Q > >
R N > R oS & W
Parameters
== 1 L I . . . . . . .
g JOHNS HOPKINS LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)

ol
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4

Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

89

| Method

|
100 | — UM.int8() | e
- 8-bit baseline | /"..
- .
I3 07— 16-bit baseline /cri/‘”
[9)
@ 80 | > .,/|
= O > 3
© I 2 e
m | 5 o7 !
v 506 »
g 60 i 2 |
b
S | £ |
S [ 8 |
I o 0.5
g 40 | c |
C
z | 8 |
= | = |
° 0.4 [
o 20 l
8 |  emergence of emergence of —— |
GCJ I41/c>utlier features outlier features |
[9)
—_
= \ 0.3 y
a
0 2 4 6 8 10 12 i;“ (O@“ ;;b ,‘:.\Q’ b{\‘b RO &Q’
~ %

Parameters in billions
Parameters

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022) 88
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Quantization of Language Models

p

LLM.iNt8()  Z0lYectorwise QUantzation oo

o

45(-1 17,

12| 3 163

[] Regular values

[] outliers

1
1
i (1) Find vector-wise constants: Cp&Cy (2) Quantize (4) Dequantize E
] 1
: X*(127/C,) =X H
! X 12— F16( 1Cy) 18 Outﬁ’; (CX®CW) E
S E1E1 0 " W (127/Cw) = Wyg 1277127 - Yo |
: 3fof3]2 02 E
i 1 0 12 L (3) Int8 Matmul i
H F16 :
] [ : f w X W = Out :
5 210 : 18 18 132 :
le3l 0 e W ! Cx ;
P16 |32 T e m e
-1 2
FrIe 16-bit Decomposition
E (1) Decompose outliers (2) FP16 Matmul
1
1
E as[17 W XF]G W:E16= OUtFle Out
H 2 FP16
1 X [12}63 —1r
i 37183 F16
! F16

Keep outlier channels/ featuresin 16-bit, quantize the rest.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)
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Quantization of Language Models

o T
o«

Parameters 125M 13B 27B 6.7B 13B

32-bit Float 2565 1591 1443 13.30 1245
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 1624 14776 1349 1394
Int8 absmax row-wise 3093 17.08 1524 14.13 16.49
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 25772 1594 1436 13.38 13.47
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 1443 13.24 1245

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurlPS 2022)
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Quantization of Language Models

Maps floating point numbers (fp32, fp16, bf16) to low precision
numbers (fp8, int8) to save memory.

s effective in reducing the memory required for both training /
inference.

8-bit quantization loses minimal performance, while 4-bit
quantization is hard, can be harmful to model performance.
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Distilling the knowledge of

larger models




Distillation

Knowledge
andfor
capabilities of
a larger model

small model
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

Loss = -log p(of)

—1.6 1

—1.8 1

—2.0 A

—2.2 1

—2.4 1

Next Token Distribution (Log-Probability)

= Cross Entropy(y_pred,
groundtruth)

,-T' JOHMS HOPELNS
v

Log-Probability

—2.6 1

—2.8 1

—3.0 1

—3.2 1

of that was the a to he in is

Token (Ordered by Probability)

and
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Revisit: Standard Training (NLLloss)

prefix: The strange case ___

groundtruth: of

—1.6 1

—1.8 1

—2.0 A

—2.2 1

—2.4 1

Next Token Distribution (Log-Probability)

loss = -log p(of)

,-T' JOHMNS HOPEINS
v

Log-Probability

—2.6 1

—2.8 1

—3.0 1

—3.2 1

of that was the a to he in is

Token (Ordered by Probability)
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Log-Probability

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

Next Token Distribution (Log-Probability)

0
-1
_2 B
34
—4
-5 . . - T T

of he was that the

B9 JoHNS HOPKINS
)

in a
Token (Ordered by Probability)

Groundtruth
(one-hot)

Log-Probability

-1.6 1
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Next Token Distribution (Log-Probability)

of that was the a to he
Token (Ordered by Probability)

y_pred
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Knowledge Distillation

KD loss = Cross Entropy(y_large, y_pred)
Next Token Distribution (Log-Probability) Next Token Distribution (Log-Probability)
~1.64
~1.84
-1.5
2.0
> —2.01 > 2]
3 H
€ 27
& &
g 25 g e
—-2.81
-3.0
-3.01
_32 4
that a he and is was to of in the of that was the a to he and
Token (Ordered by Probability) Token (Ordered by Probability)

Large model next token small model next token probs
probs (y_large) (y_pred)

=
3 JoHNS HOPKINS
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Knowledge Distillation

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

e
o«

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Z.\‘tutlcnt
—_—

Step 3: Use teacher
outputs to train student

(Cross Entropy)

Knowledge
Distillation

98



What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

e
o«

Input
Data

Pre-trained Teacher
Network

Trainable Student
Network

Zteacher

Knowledge

Z.\‘tutlcnt ol :
O — Distillation

Step 3: Use teacher
generations (instead of
outputs) to train student!
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Log-Probability

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(sampled text, y_pred)

Next Token Distribution (Log-Probability)

0
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y_pred

100



What works better (a study in 2016)

Model BLEUg—1 Ag—1 BLEUg—5 Ag—5

English — German WMT 2014

Teacher Baseline 4 x 1000 (Params: 221m) 17.7 — 19.5 —
Baseline 4+ Seq-Inter 19.6 +1.9 19.8 +0.3

Student Baseline 2 x 500 (Params: 84m) 14.7 — 17.6 —
Word-KD 15.4 +0.7 17.7 +0.1

Use teacher log-probs

Seq-KD \\ 18.9 +4.2 19.0 +1.4

Use teacher generations

Seqguence-L evel Knowledge Distillation (Kim & Rush, EMNLP 2016)
e 101


https://aclanthology.org/D16-1139/

Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually
a larger model)

- The output can be log-probabilities or sampled outputs
- Effective in "distilling" the knowledge of large models to smaller ones.
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