
Model Efficiency

CSCI 601-471/671 (NLP: Self-Supervised Models)

https://self-supervised.cs.jhu.edu/sp2025/

2

Our models are getting larger!

▪ TBD

Figure Credit: Song Han (MIT)

3

And consumes a lot of data!

4

Motivation

Model Size
(Llama 3 Arch)

Inference Memory
(~2x model size)

Training Memory
(~7x model size)

8B 16GB 60GB

70B 140GB 500GB

405B 810GB 3.25TB

Source: https://huggingface.co/blog/llama31#inference-memory-requirements

How much GPU memory (at least) do we need to perform inference/training?

(batch size=1, ignoring the KV cache)

5

Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Longer sequences require much more memory in training!

Training Sequence Length (Number of Tokens)

6

Memory consumption is not static

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

During the
forward step,
the activations
occupy most of
the memory

During
backward,
activation
memory gets
freed, gradients
gets more
memory

7

Model Efficiency: Topics

1. Distributed Training

2. Quantization (Post Training Quantization)

3. Distillation

Chapter goal: Getting comfortable with various mathematical and systems
foundations for efficient deployment of LLMs.

8

Distributed
Training

9

Distributed Training

1. Naïve Data Parallelism

2. Sharding Optimizer States (ZeRO, FSDP)

3. Model Parallelism (Tensor Parallelism, Pipeline Parallelism)

GPU 0
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

10

Naïve Data Parallelism

GPU 0
Model
Copy

GPU 1
Model
Copy

GPU 2
Model
Copy

Dataset

First, we want to shard the dataset and feed them into different GPUs
How do we update the parameters?

11

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

Each GPU compute gradient with a single shard of data

12

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1

Gradient 2

Gradient 3 One GPU accumulates the gradients
(reduce in torch.distributed)

13

NCCL Operations: Reduce

▪ Nvidia Collective Communications Library (NCCL) - A library developed to provide
inter-GPU communications primitives (operations)

▪ Reduce: *Sums* over all *tensors* and stores it in a root GPU

14

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1

Gradient 2

Gradient 3 One GPU accumulates the gradients
(reduce in torch.distributed)

15

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1

Gradient 2

Gradient 3

And send the accumulated gradient to all other
GPUs (broadcast in torch.distributed)

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

16

NCCL Operations: Broadcast

▪ Broadcast: Duplicates one tensor to all GPUs

17

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Accumulate gradients across all GPUs and perform gradient updates
（all_reduce in torch.distributed）

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

18

NCCL Operations: All Reduce

▪ All Reduce = Reduce + Broadcast

= Sum over input tensors, then duplicate it to all GPUs

19

Naïve Data Parallelism

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Accumulate gradients across all GPUs and perform gradient updates
（all_reduce in torch.distributed）

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

Gradient 1

Gradient 2

Gradient 3

20

What is wrong with Naïve DP

- Consumes too much memory in each GPU!

- 2 bytes for FP/BF16 model params

- 2 bytes for FP/BF16 gradients

- 4 bytes for FP32 master weights

(the thing you accumulate into in SGD, used in mixed precision training)

- 4 bytes for FP32 Adam first order estimates

- 4 bytes for FP32 Adam second order estimates

Slide Credit: Tatsunori Hashimoto (Stanford)

We need to store 5 copies of weights,
which occupies 16 bytes per param

GPU 1
Model
Copy

21

What is wrong with Naïve DP

22

Naïve DP – Requires too much memory!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Memory/GPU for a 7.5B model:
7.5B * 16 bytes = 120 GB!

https://arxiv.org/abs/1910.02054

23

ZeRO Stage 1: Sharding Optimizer States

Memory/GPU for a 7.5B model:
7.5B * (2+2+4) bytes = 60 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

24

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

Update Parameters

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Each GPU compute gradient with a single shard of data
(The same as naïve DP)

https://arxiv.org/abs/1910.02054

25

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Assuming that
GPU1 stores parameter states for parameters A,

GPU2 stores states for params B,
GPU3 stores states for params C

Gradient 1 Gradient 2 Gradient 3

https://arxiv.org/abs/1910.02054

26

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A B C

Split / shard the gradients into 3 parts!

Gradient 1 Gradient 2 Gradient 3

A B C A B C A B C

https://arxiv.org/abs/1910.02054

27

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A

B C

B C

A B C

A

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in

torch.distributed)

A B C

https://arxiv.org/abs/1910.02054

28

NCCL Operations: Reduce Scatter

▪ reduce_scatter: each GPU stores the sum of a shard of the input.

▪ all_reduce: one GPU stores the sum over all the input.

29

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

A

B C

B C

A B C

A

Each GPU accumulates gradients of the params whose
optimizer states the GPU is storing (reduce_scatter in

torch.distributed)

A B C

https://arxiv.org/abs/1910.02054

30

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

GPU1 : update params A; GPU2: Updates Params B; GPU3:
updates params C. GPU1 can only update params A since it

only stores optimizer states of params A.

A B C

Updated A

Updated B

Updated C

https://arxiv.org/abs/1910.02054

31

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Each GPU sends updated params to every other GPU.
Finishing optimizer.step(). (all_gather in torch.distributed)

https://arxiv.org/abs/1910.02054

32

Quiz: NCCL Operations: All Gather

▪ all_gather: every GPU performs a ___?___ operation in parallel.

A.Reduce B. Broadcast C. Reduce_scatter

33

NCCL Operations: All Gather

▪ all_gather: every GPU performs a ___broadcast___ operation in parallel.

A.Reduce B. Broadcast C. Reduce_scatter

34

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Before all_gather

A B C

Updated A

Updated B

Updated C

https://arxiv.org/abs/1910.02054

35

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

Updated A

Updated B

Updated C

After all_gather, every GPU has a updated copy of the
model

https://arxiv.org/abs/1910.02054

36

Summary: ZeRO 1

▪ reduce_scatter on the gradients: splitting the gradients into different GPUs

▪ Each GPU individually perform gradient updates

▪ all_gather on updated parameters

▪ Basically free! (Compared to Naïve Data Parallelism)

37

ZeRO Stage 1: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

Notice: Aside from the forward pass, GPU 1 only needs
gradients A, but in fact it stores A and B and C

A

A

A

Hey GPU1, you don't need this (can be large)

You only need these

https://arxiv.org/abs/1910.02054

38

ZeRO Stage 2: Sharding Gradients

Memory/GPU for a 7.5B model:
7.5B * (2+2/3+4) bytes = 50 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

39

ZeRO Stage 2: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient of layer X

A B C

A

A

A B

B

B

C

C

C

Splitting the gradient of a single layer during backprop, then immediately shard it!

Gradient of layer X Gradient of layer X

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

40

ZeRO Stage 2: How it works

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Gradient 1 Gradient 2 Gradient 3

A B C A B C A B C

Params A

Params B

Params C

Params A

Params B

Params C

Params A

Params B

Params C

All-gather

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

41

Summary: ZeRO 12

▪ reduce_scatter on the gradients: splitting the gradients into different GPUs

▪ Calculate gradients layer by layer and perform reduce_scatter, once layer is done,
free the gradient

▪ Each GPU individually perform gradient updates

▪ all_gather on updated parameters

▪ Almost free!

42

ZeRO-3 (aka FSDP): Shard Everything!

Memory/GPU for a 7.5B model:
7.5B * (2/3+2/3+4) bytes = 40 GB!

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al., 2019)

https://arxiv.org/abs/1910.02054

43

ZeRO Stage 3: How it works (simplified)
During forward pass, the parameters are gathered on-demand

44

ZeRO Stage 3: How it works (simplified)
During backward pass, the gradients are scattered (Reduce_Scatter)

45

Communication Costs

- Naïve Data Parallel: 2x parameter (all_reduce)

- ZeRO-1: 2x parameter (reduce_scatter + all_gather) - this is free! Might as
well always use it.

- ZeRO-2: 2x parameter (reduce_scatter + all_gather + overhead) - this is
(almost) free!

- ZeRO-3: 3x parameter – which can be quite slow.

46

Where did all the memory go?

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

So far, we dealt with the optimizer states

but what about the activations?

Training Sequence Length (Number of Tokens)

47

Prefix Caching

but what about the activations?

<System> You are a helpful assistant … <System>
<User> I want to know how can I use the coffee machine <User>

<System> You are a helpful assistant … <System>
<User> Write the code for training my language model. <User>

<System> You are a helpful assistant … <System>
<User> Help me revise my email ... <User>

48

Prefix Caching

Storing the activations in CPU and retrieve it when needed.

<System> You are a helpful assistant … <System>

KV Cache

CPU

But, can we slice the activations to fit them in different GPUs?
- Yes, by Tensor Parallelism

49

Tensor Parallelism

We can either cut
the weights W into
two columns
(Column Parallelism)

or into two rows
(Row Parallelism)

50

Column-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight
matrix W into 2
columns

51

Row-wise Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Cuts the weight
matrix W into 2
rows

52

Tensor Parallelism

X
W1 W2

Y

Computing matrix
multiplications without
storing internal activations
(e.g. xW1)

In Feed-Forward Networks,
The dimension of
W1 is usually 4x the hidden
dimension.

53

Tensor Parallelism: Llama Feed-Forward

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

activations are element-wise operations, can be parallelized

54

Tensor Parallelism: Llama Attention

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

Column Parallel for Query, Key and Vector and Row Parallel for attention output

55

Summary so far

- Data Parallelism

- Naïve Data Parallelism

- NCCL Operations

(reduce, all_reduce, reduce_scatter, broadcast, all_gather)

- ZeRO-1, ZeRO-2, ZeRO-3

- Prefix Caching

- Tensor Parallelism

- Row-wise Tensor Parallelism

- Column-wise Tensor Parallelism

56

Tensor Parallelism

Source: https://github.com/meta-llama/llama/blob/main/llama/model.py

57

Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

A large drop in throughput when scaling beyond 8 GPUs (one node)

58

Throughput Scaling of Tensor Parallelism

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

Throughput drops significantly once we go beyond one node!

59

Pipeline Parallelism

Credit: Song Han (MIT)

Shard each layer of the model into individual GPUs:
Prevents the cost of syncing params

60

Pipeline Parallelism

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Each GPU is only working for 1/PP = ¼ of the time!
Idle/Work ratio = pp – 1 = 3

https://arxiv.org/pdf/1811.06965

61

Pipeline Parallelism: Improvement

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

Solution: Splitting the data into mini-batches! (AFAB)

Idle / Work Ratio = PP-1 / M= 3 / 4

https://arxiv.org/pdf/1811.06965

62

Pipeline Parallelism

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (Huang et al., NeurIPS 2019)

A cleverer version of AFAB: 1 Forward 1 Backward (1F1B)
Idea: Do backward as early as possible, releasing activations on the fly

Roughly the same Idle/Work Ratio but less memory
(as you only need to store p=4 activations rather than m=8)

https://arxiv.org/pdf/1811.06965

63

Pipeline Parallelism Throughput

A small drop in throughput when scaling beyond 8 GPUs (one node)
but a large drop as we increase the microbatch number

64

Interleaving Pipeline Parallelism (LLama3)

65

Interleaved Pipeline Parallelism (DeepSeek)

backprop for weights (blue) can be computed at any time!
We fill in the bubble with weight back propagation.

66

What about (super) long sequences?

This is a super long sequence of text.

This is a super long sequence of text

GPU 1
Model
Copy

GPU 2
Model
Copy

GPU 3
Model
Copy

Suppose we want to split the sequence into different GPUs

67

What about (super) long sequences?

- Feed Forward Network / LayerNorm is not affected by
splitting the sequence, each token is processed individually

- But what about attention? Each token needs to compute dot
product with every other token.

68

Context Parallelism (Ring Attention)

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

Just pass the Key, Value
pairs around!

However, attention mask
is usually causal – Q1
does not need K2, V2, ...

69

Context Parallelism (Ring Attention)

Source: Ring Attention with Blockwise Transformers For Near-Infinite Context (Liu et al., 2023)

GPU 1 computes the pre-
softmax-ed scores for
Q1, Q2, Q3, Q4.. then
becomes idle.

70

Context Parallelism (Ring Attention)

Source: Striped Attention: Faster Ring Attention for Causal Transformers (Brandon et al., 2023)

Balancing the workload
for each individual GPUs.

71

Context Parallelism (Ring Attention)

Source: https://nanotron-ultrascale-playbook.static.hf.space/dist/index.html

72

Summarizing

Source: Tatsunori Hashimoto (Stanford)

73

Solutions

- DeepSeek V3: DP=1, PP=16, EP (Expert Parallelism) = 8

- Llama 3: Staged Training

74

Quantization

75

Quantization: Mapping from high to low
precision

76

Numeric Data Types

▪ Example: 32-bit floating point number in IEEE 754 (FP32)

77

Floating Point Numbers

78

Floating Point Numbers

More range, less precision

79

Linear Quantization

How to find these numbers?

80

Linear Quantization

81

Linear Quantization: Scale

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877

82

Linear Quantization: Zero Point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877

83

Linear Quantization: Zero Point

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

https://arxiv.org/abs/1712.05877

84

Quantization of Language Models

There exists many outliers in activations (activations of the first layer MobileNetV2):

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721

85

Quantization of Language Models

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

https://arxiv.org/abs/1906.04721

86

Quantization of Language Models

Data-Free Quantization Through Weight Equalization and Bias Correction (Kagel et al., ICCV 2019)

Quantize each channel individually, each channel gets its own scale and Zero-point!

https://arxiv.org/abs/1906.04721

87

Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

88

Quantization of Language Models

Outlier features significantly harms performance after quantization in LMs.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

https://arxiv.org/abs/2208.07339

89

Quantization of Language Models

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

Keep outlier channels / features in 16-bit, quantize the rest.

https://arxiv.org/abs/2208.07339

90

Quantization of Language Models

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., NeurIPS 2022)

Zeropoint > absmax because outliers non-symmetric (either very large or very small, but not both)

https://arxiv.org/abs/2208.07339

91

Quantization of Language Models

- Maps floating point numbers (fp32, fp16, bf16) to low precision
numbers (fp8, int8) to save memory.

- Is effective in reducing the memory required for both training /
inference.

- 8-bit quantization loses minimal performance, while 4-bit
quantization is hard, can be harmful to model performance.

92

Distilling the knowledge of
larger models

93

Distillation

Knowledge
and/or
capabilities of
a larger model

small model

94

Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

Loss = -log p(of)
= Cross Entropy(y_pred,
groundtruth)

95

Revisit: Standard Training (NLLloss)

prefix: The strange case ___
groundtruth: of

loss = -log p(of)

96

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(groundtruth, y_pred)

y_predGroundtruth
(one-hot)

97

Knowledge Distillation

KD loss = Cross Entropy(y_large, y_pred)

small model next token probs
(y_pred)

Large model next token
probs (y_large)

98

Knowledge Distillation

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

Step 3: Use teacher
outputs to train student
(Cross Entropy)

99

What if the teacher is Proprietary (GPT)?

Step 1: Initialize teacher
model with a large and
capable model

Step 2: Feed input data to
both student and teacher
(freezed)

Step 3: Use teacher
generations (instead of
outputs) to train student!

100

Revisit: Standard Training (NLLloss)

loss = -log p(of) = Cross Entropy(sampled text, y_pred)

y_predSampled output
(one-hot)

101

What works better (a study in 2016)

Sequence-Level Knowledge Distillation (Kim & Rush, EMNLP 2016)

Use teacher generations

Use teacher log-probs

https://aclanthology.org/D16-1139/

102

Knowledge Distillation

- Train student (usually smaller model) on the output of a teacher (usually
a larger model)

- The output can be log-probabilities or sampled outputs

- Effective in "distilling" the knowledge of large models to smaller ones.

	Slide 1: Model Efficiency
	Slide 2: Our models are getting larger!
	Slide 3: And consumes a lot of data!
	Slide 4: Motivation
	Slide 5: Where did all the memory go?
	Slide 6: Memory consumption is not static
	Slide 7: Model Efficiency: Topics
	Slide 8
	Slide 9: Distributed Training
	Slide 10: Naïve Data Parallelism
	Slide 11: Naïve Data Parallelism
	Slide 12: Naïve Data Parallelism
	Slide 13: NCCL Operations: Reduce
	Slide 14: Naïve Data Parallelism
	Slide 15: Naïve Data Parallelism
	Slide 16: NCCL Operations: Broadcast
	Slide 17: Naïve Data Parallelism
	Slide 18: NCCL Operations: All Reduce
	Slide 19: Naïve Data Parallelism
	Slide 20: What is wrong with Naïve DP 
	Slide 21: What is wrong with Naïve DP
	Slide 22: Naïve DP – Requires too much memory!
	Slide 23: ZeRO Stage 1: Sharding Optimizer States
	Slide 24: ZeRO Stage 1: How it works
	Slide 25: ZeRO Stage 1: How it works
	Slide 26: ZeRO Stage 1: How it works
	Slide 27: ZeRO Stage 1: How it works
	Slide 28: NCCL Operations: Reduce Scatter
	Slide 29: ZeRO Stage 1: How it works
	Slide 30: ZeRO Stage 1: How it works
	Slide 31: ZeRO Stage 1: How it works
	Slide 32: Quiz: NCCL Operations: All Gather
	Slide 33: NCCL Operations: All Gather
	Slide 34: ZeRO Stage 1: How it works
	Slide 35: ZeRO Stage 1: How it works
	Slide 36: Summary: ZeRO 1
	Slide 37: ZeRO Stage 1: How it works
	Slide 38: ZeRO Stage 2: Sharding Gradients
	Slide 39: ZeRO Stage 2: How it works
	Slide 40: ZeRO Stage 2: How it works
	Slide 41: Summary: ZeRO 12
	Slide 42: ZeRO-3 (aka FSDP): Shard Everything!
	Slide 43: ZeRO Stage 3: How it works (simplified)
	Slide 44: ZeRO Stage 3: How it works (simplified)
	Slide 45: Communication Costs
	Slide 46: Where did all the memory go?
	Slide 47: Prefix Caching
	Slide 48: Prefix Caching
	Slide 49: Tensor Parallelism
	Slide 50: Column-wise Tensor Parallelism
	Slide 51: Row-wise Tensor Parallelism
	Slide 52: Tensor Parallelism
	Slide 53: Tensor Parallelism: Llama Feed-Forward
	Slide 54: Tensor Parallelism: Llama Attention
	Slide 55: Summary so far 
	Slide 56: Tensor Parallelism
	Slide 57: Throughput Scaling of Tensor Parallelism
	Slide 58: Throughput Scaling of Tensor Parallelism
	Slide 59: Pipeline Parallelism
	Slide 60: Pipeline Parallelism
	Slide 61: Pipeline Parallelism: Improvement
	Slide 62: Pipeline Parallelism
	Slide 63: Pipeline Parallelism Throughput
	Slide 64: Interleaving Pipeline Parallelism (LLama3)
	Slide 65: Interleaved Pipeline Parallelism (DeepSeek)
	Slide 66: What about (super) long sequences?
	Slide 67: What about (super) long sequences?
	Slide 68: Context Parallelism (Ring Attention)
	Slide 69: Context Parallelism (Ring Attention)
	Slide 70: Context Parallelism (Ring Attention)
	Slide 71: Context Parallelism (Ring Attention)
	Slide 72: Summarizing
	Slide 73: Solutions
	Slide 74
	Slide 75: Quantization: Mapping from high to low precision
	Slide 76: Numeric Data Types
	Slide 77: Floating Point Numbers
	Slide 78: Floating Point Numbers
	Slide 79: Linear Quantization
	Slide 80: Linear Quantization
	Slide 81: Linear Quantization: Scale
	Slide 82: Linear Quantization: Zero Point
	Slide 83: Linear Quantization: Zero Point
	Slide 84: Quantization of Language Models
	Slide 85: Quantization of Language Models
	Slide 86: Quantization of Language Models
	Slide 87: Quantization of Language Models
	Slide 88: Quantization of Language Models
	Slide 89: Quantization of Language Models
	Slide 90: Quantization of Language Models
	Slide 91: Quantization of Language Models
	Slide 92
	Slide 93: Distillation
	Slide 94: Revisit: Standard Training (NLLloss)
	Slide 95: Revisit: Standard Training (NLLloss)
	Slide 96: Revisit: Standard Training (NLLloss)
	Slide 97: Knowledge Distillation
	Slide 98: Knowledge Distillation
	Slide 99: What if the teacher is Proprietary (GPT)?
	Slide 100: Revisit: Standard Training (NLLloss)
	Slide 101: What works better (a study in 2016)
	Slide 102: Knowledge Distillation

